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Preface

Understanding human health—defined by the World Health Organization (WHO) as a “state of
complete physical, mental, and social well-being, and not merely the absence of disease or
infirmity”i—is vital. Why are these people sick but those people aren’t? What can we do to improve
health for everyone? Improved health in turn leads to gains in economic, social, educational, and
other arenas, all of which are necessary for a successful, functioning society.

Unfortunately, to understand human health, we must study humans—and humans are extremely
difficult to study. Unlike laboratory-based sciences, where all conditions are under the control
of the scientist, conducting scientific studies with human participants includes a host of
complications and potential stumbling blocks. First and foremost, humans do not exist in
controlled settings like laboratories. Each person has their own job, their own preferred foods,
their own sleep schedule, their own hobbies, their own genetics, their own stress levels, their own
set of environmental and social settings—all of which affect health. Since no two people are exactly
alike, and since we cannot really tell people what to do, studying them is difficult.

Epidemiology is the set of tools we use to study human health. As such, it is not a topic itself
per se, but rather a set of research methods that are then applied to other health-related topics
(kinesiology, infectious disease, cardiology, child development, etc.). Epidemiology can help
answer questions such as the following:

• Are dietary-based or exercise-based interventions better for preventing a second heart
attack?

• Which people are at the highest risk of dying from influenza?
• Is it safe to eat raw oysters?
• Do birth control pills cause breast cancer?
• How does Zika virus spread?

An understanding of epidemiologic methods is helpful for anyone interested in human health,
particularly those in public health or clinical fields. This book is written primarily for use in
undergraduate introductory epidemiology classes; however, graduate students, medical students,
and professionals working in public or allied health fields may also find it useful either as an
introduction or as a refresher.

This book is intended to provide a basic introduction to epidemiologic methods and epidemiologic
thinking. After reading this book, you should be able to read an epidemiologic study, understand
what the authors did and why, and identify what they found. You will also have the tools to assess
the quality of that study—how good is the evidence? What are potential sources of bias, and
how might those have affected the results? This book will not teach you enough to be able to
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design and conduct your own epidemiologic studies—that level of understanding requires several
years of specialized training. However, being able to read and understand the scientific literature
about human health will allow you to apply that understanding to your own work in a nuanced,
sophisticated way.

It will also allow you to be a confident consumer of the news—how many times have you seen
a headline about some new, health-related study and wondered if it could possibly be “real”?
Now you will be able to assess for yourself whether the touted new study should change your
behavior or not. For instance, for many years we were told that low levels of alcohol consumption,
particularly of red wine, were beneficial.ii Then during the summer of 2018, the WHO released a
statement saying that no, all alcohol consumption is harmful.iii What should you do? Is a glass of
wine a day a good idea or not? This book will provide the tools necessary for you to be able to
assess the epidemiologic evidence and decide for yourself.

References
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1. What is Epidemiology?

Learning Objectives

After reading this chapter, you will be able to do the following:

1. Define epidemiology
2. Provide examples illustrating each of the 5 parts of the epidemiology definition
3. Describe the way in which epidemiology fits into the overall public health workforce

Public health deals with the well-being of communities, with a focus on disease prevention. This
is accomplished “through the organized efforts and informed choices of society, organizations,
public and private communities, and individuals.”i In other words, public health professionals first
assess the health status of the population, determine the causes of any health problems, design
interventions in an attempt to address those problems, and then reassess the population’s health
to evaluate whether the intervention worked.ii

Figure 1-1

Epidemiology is the basic science of public health, and epidemiologists are heavily involved with
all 3 steps shown above. We are involved with surveillance and other health assessment activities,
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our studies are instrumental in determining the causes of health outcomes, and we are often part
of the teams that evaluate public health interventions.1

There exist many closely related definitions of epidemiology. This is the one I like:

Epidemiology is the study of the distribution and determinants of disease or other
health-related outcomes in human populations, and the application of that study to
controlling health problems.ii, iii, iv

There are several key words and phrases in that definition that relate directly back to the core
public health functions. First, epidemiologists are concerned with the distribution of a disease
— that is, with describing the pattern of an illness in terms of person, place, and time. This
descriptive epidemiology effort is almost always a necessary first step in any public health
initiative.

Disease Is Not Randomly Distributed

Epidemiology as a science works because disease is not randomly distributed within the population. If it
were—that is, if there were no risk factors and nothing that would either cause or prevent a case from
occurring other than sheer luck—then we would not be able to determine who is at greatest risk. If we could
not determine who is at greatest risk, then prevention efforts (the holy grail of public health) would be
impossible. However, disease is not random. Thus epidemiologists spend their time trying to figure out why
these people get sick but those people don’t. Once we figure that out, we have a starting point for planning
prevention campaigns with our public health colleagues.

1. Public health interventions comprise any action by a health department, legislative body, or other
allied health professional that is designed to improve public health. This could be an education
campaign (e.g., billboards about hazards of smoking), surveillance and follow-up, disease outbreak
investigation, legislative policy development, outreach efforts (e.g., taking a dental van to elementary
schools), etc.
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Distribution

Person

Who is getting sick? Men? Women? The elderly? Children? People who live near a particular
factory? What do the people who experience the health outcome have in common, and what do
the people who do not experience the outcome have in common?

As a basic example, let’s look at circadian sleep disorder. Based on data published by the WHO, this
is the distribution of this condition, broken out by age and sex:

Figure 1-2
Source:
https://brianaltonenmph.com/…/sociocu
lturalism-and-health/

Several things become apparent from Figure 1-2. First, circadian sleep disorder is much more
common in males than in females. Second, this disorder is most common in adult males in their
20s and 30s. Third, for those females who do have this disorder, it is the most common in
adolescents and young adults.
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Knowing these patterns—the distribution—of disease would be helpful if you were a clinician
trying to diagnose a patient complaining of troubled sleep. Is the patient a 5-year-old female? If so,
then it’s probably not circadian sleep disorder. Knowing patterns of disease is also useful for public
health departments, so they can plan what to do with their limited resources. A health education
campaign about healthy sleep habits, according to this figure, would get the most “bang for the
buck” if it were targeted at young and middle-aged adult males.

Place

Like other demographic characteristics, where people live has implications for their health. The
classic example is a polluting factory: those families who live closer to the contamination may
have poorer health than those living farther away or upwind. Infectious diseases can also vary by
geographic region—mosquito-borne diseases such as malaria, dengue, and Zika are common in
the tropics, where the Aedes aegypti mosquitoes2 that carry these diseases live, and do not occur
in colder regions, which are populated with different mosquito species. Thus a physician in Maine
would likely not diagnose malaria unless the patient had recently been traveling to the tropics.

Health behaviors can also vary by geography. The Centers for Disease Control and Prevention
(CDC) recently published these data on seat belt use throughout the US:

2. Mosquitoes here are the disease vector—see http://www.who.int/news-room/fact-sheets/detail/
vector-borne-diseases for more information about infectious disease vectors.
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Figure 1-3
Source: https://www.cdc.gov/…/seatbelt_map.html

Again, studying and understanding the distribution of disease or behavior by place matters for
both clinicians and public health professionals: a health department in Minnesota probably does
not need to spend resources encouraging seat belt use, whereas in Montana, this might be an
excellent use of resources.

Time

The final important factor in descriptive epidemiology is time: How is the distribution of the
disease changing over time? For instance, Figure 1-4 gives us a picture of cesarean section rates
over 15 years in New South Wales, Australia:
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Figure 1-4: Predicted and actual caesarean section rate between the years of 1994 and
2010.
Source: https://bmjopen.bmj.com/…/e001725

The red line indicates the rate of cesarean sections that would be predicted based on pregnancy
risk factors, such as maternal height, maternal blood pressure, and whether it is a multiple
pregnancy (e.g., twins). You can see that the cesarean rate based on these known predictors
was expected to rise only slightly during the 15 years covered by this graph. However, the blue
line shows the actual rate, which rose much more quickly than we would have expected. To the
extent that cesarean surgery carries risks (major surgery always has risks), this unexpected jump
in cesareans—observed throughout the world, not just in Australia—is alarmingv. Indeed, efforts to
reduce the cesarean rate are currently a top priority for obstetricians, midwives, and public health
officials worldwide.vi, vii, viii, ix

Determinants

In addition to who, epidemiologists are also interested in why, which brings us to causes, or
determinants. We will cover epidemiologic causal theory in depth in chapter 10; here, I will just
introduce the topic briefly.

In epidemiology (and throughout this book), when we say “cause,” we mean “cause or prevent.”
In other words, a cause (determinant) is anything that changes the likelihood that an individual
will become diseased. Sometimes a determinant increases this chance (e.g., smoking); other times,
a determinant decreases this chance (e.g., exercise). By this logic, both smoking and exercise
are “causes” of disease—the former increases the risk of a variety of conditions, and the latter
generally reduces risks. In epidemiology, a determinant, or cause, can be anything that meets
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the criterion of altering one’s risk of disease: behaviors, demographics, genetics, environmental
contaminants, and so on. Collectively, all determinants of that disease are called the etiology of a
disease.

Cause or Disease?

Health behaviors are unique in epidemiology in that they can, depending on context, be both determinants and
diseases. For example, smoking causes lung cancer (it’s a determinant). However, in an evaluation of a smoking
cessation program, smoking is the outcome (it’s the “disease”). The same is true for physical activity, nutrition,
etc.

Disease

Much like cause, disease is an interesting word in epidemiology—it is used to mean “any health-
related condition or outcome.” Epidemiologists study all manner of health outcomes. Some are
“diseases” in the traditional, illness sense: measles, HIV, diabetes, and leukemia. Others are
definitely health outcomes but aren’t a disease per se: pregnancy, malnutrition, physical activity,
death. Throughout this book, the word disease will be used to refer to any health outcome
regardless of whether it is traditionally thought of as a disease in the sense of illness.

Populations

Epidemiologists concern themselves with populations, not individual people. This is both a great
asset and a source of great confusion!

First, a definition: a population is a group of people with a common characteristic. This could be
residents of the United States, people with type 1 diabetes, people under age 25 who work full-
time, and so on. For epidemiologists, the population is the group of people about whom we wish to
be able to say something. For instance, say that we are interested in whether the amount of sleep
a student gets is related to his or her grade point average (GPA). If we are mainly interested in this
relationship among college students, then our population might be “full-time undergraduates.”
However, there are a lot of full-time undergraduates in the world; we cannot possibly enroll them
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Figure 1-5

all into our study. We therefore draw a sample from the target population and do the study with
the people in the sample (which here will be some smaller group of full-time undergraduates).

Ideally, the sample will be similar enough to the target
population that our results can indeed be generalized back to
that population (remember, the target population is the
group we want to say something about); therefore, we would
work to recruit a diverse sample of students who are similar
to the population. We would be hard-pressed to generalize
to all full time undergraduates if our study was done only
among first-year biology majors. However, note that the
generalizability of our sample does not always matter as
much as it does in other fields (see chapter 6 for a lengthier
discussion of external validity).x

Inclusion/Exclusion Criteria

We define populations via lists of inclusion and/or exclusion criteria. These are just flip sides of the same coin:
you can either include kids or exclude adults. It usually doesn’t matter whether inclusion or exclusion criteria
are used; whichever provides the greatest clarity is generally the best choice. When defining a population, the
list of inclusion and exclusion criteria must be sufficiently complete that any given person could look at it and
decide whether they were in the population.

As an example, if we were planning a study of strength training to prevent osteoporotic fractures in elderly
women, the inclusion/exclusion criteria would need to specify the following:

• the lower (and potentially, upper) age cutoff (i.e., what is “elderly” for our purposes?)
• whether we are interested in biological females, those who identify as women, or both
• whether there are any exclusions in terms of physical capabilities (e.g., not all elderly women are able to

do a strength training regimen)

We might choose to exclude women for whom exercise of any kind is contraindicated (e.g., if they are heart
failure patients), or those who have already had a hip fracture, and so on.

Note that, when creating inclusion/exclusion criteria lists, only rarely is there a “correct” answer. Often,
scientific or clinical considerations will help narrow it down, but in our example above, it probably doesn’t
matter if we set the lower age bound at 60, 65, or 70, as long as we set one and stick to it. Occasionally, policy
reasons dictate that one group or another is chosen—for instance, Medicare in the US covers individuals ages
65 and older, so we often see studies in this age group specifically.

Let’s reflect back on our definition of epidemiology: we are looking at distributions and
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determinants of disease in populations. This is an important point to understand—physicians,
nurses, and other clinicians are concerned mainly with diseases in individuals, whereas in
epidemiology, our focus is instead on populations. This can make interpreting epidemiologic
results difficult, since epidemiologic results pertain to populations, not individuals.

For instance, recent data on deaths related to the opioid epidemic suggest that the riskiest state
in the US is West Virginia (43.4 opioid-related deaths per 100,000 people in one year) and the
least risky is Nebraska (2.4 per 100,000 people in one year).xi Note that these statistics say
nothing about individual levels of risk—all that they say is that, on average, people from West
Virginia are much more likely to die from opioid-related causes than people from Nebraska. These
are population-level data. For any one individual, we must consider much more than just where
the person lives, although that is certainly relevant. A person addicted to painkillers in Nebraska
surely has a higher risk of opioid-related death than does a person in West Virginia who has
never taken any pain medicine stronger than aspirin, even though the population-level risks might
suggest otherwise.

Population-level statistics are a powerful tool because they allow us to do the work of
epidemiology—figuring out why some groups (populations) are at higher risk than others.
However, when looking at aggregated statistics, one must always keep in mind that any one
individual’s risk is lost within the group. For example, returning to our sleep/GPA study, suppose
we are concerned with the average amount of sleep for male and female students. We define
our population as full-time, on-campus undergraduates at 4-year institutions in the US (these
are the inclusion criteria). We decide to draw our sample from Oregon State University (OSU)
and recruit 4,000 students—2,000 males and 2,000 females—to be in our study. We determine
that male students sleep an average of 7.2 hours per night and that female students sleep an
average of 7.9 hours per night. While this comparison may allow us to comment on differences
between male and female students on a population level, it says nothing about individual students.
Within our sample, it would be relatively easy to find a given pair of students wherein the male
student averaged more sleep than the female.3 When interpreting epidemiologic data, therefore,
it is always important to remember that the data refer to groups of people—not to individuals.

Controlling Health Problems

The final piece of our definition is that epidemiology uses all of the information on distributions

3. Also masked within these averages, of course, are personal variations. Even if I average 7.4 hours of
sleep per night, certainly there are nights where I get less and nights where I get more. See chapter
6 for a more thorough discussion of this and other issues.
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and determinants of diseases in populations to control health problems. This final application step
is not included in all epidemiology definitions, and indeed whether it should be is controversial
in the field.xii To my way of thinking, however, the rest does not matter without this step.
Epidemiology is the fundamental science of public health, and public health is concerned with
preventing disease and improving general wellness in the public. Merely knowing that male
students get less sleep than female students does us little good. Who cares? The way we can
contribute to the health of the public is by taking action based on this knowledge. Imagine if the
epidemiologists who first made the link between smoking and lung cancer had not acted on their
findings!xiii

Epidemiologic data are a key part of numerous possible public health actions, including health
education campaigns, policy or regulation changes, clinical practice changes, and many other
initiatives. Rarely do epidemiologists take this step by themselves—collaboration with
professionals from other fields within and related to public health is a must. However, the data
generated by epidemiologists are fundamental to planning these actions, the effectiveness of
which should always be formally evaluated (a process that often involves epidemiologists) to make
sure they worked as intended.

Epidemiology Two Ways

The word epidemiology can refer both to the set of methods we use to study the distribution and determinants
of disease (as I have used the term thus far in this chapter) – as well as to the collected body of knowledge for a
particular health outcome gained as a result of that study. For instance, everything we know thus far about risk
factors and prognoses for heart failure can collectively be referred to as “the epidemiology of heart failure.”

Conclusions

Epidemiology is an important field within public health. Epidemiologists study disease patterns
within populations to determine risk profiles and potential health-improvement targets, and they
collaborate with others to implement data-driven, population-level, health-related interventions.
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2. Measures of Disease Frequency

Learning Objectives

After reading this chapter, you will be able to do the following:

1. Define and calculate prevalence
2. Classify individuals as either at risk of disease or not
3. Define and calculate incidence proportion
4. Construct intervals of person-time at risk for a given population
5. Define and calculate incidence rate
6. Differentiate between incidence and prevalence, and explain the mathematical relationship between

them

In public health, we often want to quantify disease—how many people are affected by this health
outcome? At first glance, this might seem like a simple question, but once you consider the many
applications of quantifying disease, the complexities become apparent. In this chapter, you will
learn about 3 measures of disease frequency: counts, prevalence, and incidence.

Counts (a.k.a. Frequencies)

Sometimes, particularly for extremely rare conditions, we only need to know how many people are
sick. How many cases of disease X or health behavior Y were there? A count is just a number—there
are no fractions, numerators, or denominators, and the units are always “people.”

During the 2017/2018 academic year, for instance, an outbreak of meningococcal meningitis at
Oregon State University (OSU) was quantified by counts: 6 students got sick.i

From surveillance data (see chapter 3), we know that the expected number of cases of
meningococcal meningitis in a given year is zero. Therefore, 6 cases constitute a level quite above
what is expected and would be termed an epidemic (see chapter 3).

For rare conditions like this one, simply knowing how many cases there are is sufficient for a
proper public health response. Since we normally expect none, officials at OSU and the local
health department just needed to know that there were 6 students with meningococcal meningitis
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in order to mount a response (in this case, requiring students 25 years old and younger to be
vaccinated).i

Similarly, we could look at animal rabies cases observed in Oregon over a 10-year period:

Figure 2-1

Source: https://www.oregon.gov/oha/PH/…/2015-Rabies.pdf

The above picture is useful from a public health infrastructure perspective1; if you work at the
health department in Josephine County, then you might want to keep a few doses of rabies vaccine
on hand (since cases of rabies in animals are often discovered because the infected animal bit a
human, who must then be vaccinated). However, if you work at the health department in Wallowa
County, which has had no recorded cases of animal rabies in 10 years, then maybe your resources
would be better spent on things other than vaccine doses that will likely expire before they are

1. The final line in the 'Animal rabies cases' key has been edited to read '20-24.' The original source
image reads '2-24.'
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used (assuming you could quickly get doses of the vaccine from the state or neighboring counties
if they ever became necessary).

Counts are less useful if we want to compare 2 populations. For instance, 1,000 cases of flu in
Ashland, New Hampshire, versus 100,000 cases of flu in New York City—we cannot compare these
2 figures at a glance, because the denominators (i.e., the number of people living in each city) are
so different.

Incidence and Prevalence

There are 2 commonly used measures of disease frequency that incorporate denominator
information: one is a measure of existing disease (prevalence), and the other is a measure of new
disease (incidence). Incidence is used to study causes of disease, whereas prevalence is used more
for resource allocation.

Prevalence

Prevalence is a proportion, meaning that everyone who appears in the numerator must also appear
in the denominator. This also means that prevalence ranges from zero (no one has the disease) to
one (everyone has the disease), and it is usually expressed as a percent.

Prevalence gives us a snapshot of the population-level disease burden at a given time. The formula
for prevalence is

Looking at the formula for prevalence, you can see that everyone in the numerator is also in
the denominator. Like counts, prevalence is used for resource-planning purposes. Consider the
following question a public health authority might be faced with: How much money should our
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county health department spend on health education about smoking versus on physical activity?
One metric for deciding might be which behavior is more prevalent in the local population.2

The “at a specified time” part of the prevalence definition could refer either to a specific date (e.g.,
what was the prevalence of flu in Newport, OR on January 22, 2018?) or to a time point in people’s
lives (e.g., what is the prevalence of breastfeeding at 6 weeks postpartum?).

The numerator for prevalence is all current cases. Whether the cases were diagnosed yesterday
or 20 years ago doesn’t matter; both would appear in the numerator. Thus prevalence is affected
both by the rate at which new cases occur (the incidence, see below) and by how long people
typically live with disease. Prevalence is therefore less useful for conditions such as a cold or the
flu (where people recover quickly) because once they recover, they are no longer a prevalent case.
At any given point in time, most people don’t have the flu, and so it would seem like the disease
burden is quite low based on point prevalence, or prevalence calculated on a specific date. In such
instances, we sometimes calculate period prevalence instead, which is just prevalence of disease
over the course of a longer time frame: for example, what was the prevalence of flu in Newport, OR
during the entire 2017-2018 flu season? The numerator here would be all of the cases that occurred
at any time during those months (counting only the first instance if anyone was unlucky enough to
have influenza twice), and the denominator would be everyone who lived in Newport during those
same months.

Fig. 2-2

As another example, in Figure 2-2, the prevalence of being light orange is 4/12 = 0.33 = 33%. Note

2. We would use counts to make these decisions when the condition in question is extremely rare,
such that the prevalence would be 0.000001% or similar. Then denominators are not as
important—this is the case for rabies, as discussed above.
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that prevalence does not have units (though providing the specified time is often appropriate and
never wrong).

Prevalence Examples

Example 1 (Hypothetical Data)

If there are 5,000 students who live in the dorms at Oregon State University (OSU), and during winter term
2018, 400 of them had the flu at some point, then the prevalence of flu was

400/5,000 = 0.08 = 8.0% of students living in the dorms during winter term 2018 had the flu at some
point

The above is an example of a period prevalence, since we were calculating it over a time period longer than one
day. It is also an example of the specified time being calendar time—for everyone involved, the specified time
was the 2018 winter term.

Example 2 (Based on Known Birth, Infant Death, and Breastfeeding Rates in Oregon)

In 2012, 48,972 babies were born in Oregon. At 14 weeks postpartum, 33,399 of them were being breastfed, and
146 had died. What is the prevalence of breastfeeding at 14 weeks postpartum?

Here we need to subtract the 146 infants who died before 14 weeks from the denominator, as they are no longer
part of the population:

33,399/(48,972-146) = 0.684 = 68.4% of infants born in Oregon in 2012 were being breastfed at 14 weeks
postpartum

The above is an example of the specified time being a particular point in someone’s life: the day on which a
given baby turns 14 weeks old varies depending on the day he or she was born. This is not a period prevalence,
because everyone was assessed on one day—we have just spread those days out throughout the year.

Example 3 (Based on National Estimates)
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You can also reverse the calculations to establish the number of people with a disease, given the prevalence
and population size. In a report on bone health by the Centers for Disease Control and Prevention (CDC),v the
authors reported that the prevalence of osteoporosis among men aged 65 and older was 5.6%, and the
prevalence among women aged 65 and older was 24.8%. According to data from the US Census Bureau,vi as of
July 1, 2017, there were an estimated 22,564,684 men and 28,293,995 women aged 65 and older living in the US.
Applying the prevalence, we can estimate that:

22,564,684 × 0.056 = 1,263,622 men aged 65 or older

and

28,293,995 × 0.248 = 7,016,911 women aged 65 or older

currently have osteoporosis in the US.

Incidence

Incidence is a tricky word in epidemiology, because while it is always a measure of new cases, there
are 2 possible denominators and at least a half-dozen words that all refer to this same thing. Yikes!

The numerator for incidence is always the number of new cases of a disease observed over some
time period. This means that, to study incidence, you must (1) follow people for some length
of time (the length varies according to the disease—a few hours or days for a foodborne illness
versus a few decades for some cancers) and (2) start with a population at risk—that is, people
who are at risk of developing the disease (at risk of becoming a case). Usually, at a minimum, we
therefore exclude people who already have the disease—such people cannot become an incident
case because they are already a prevalent case. We also exclude anyone not capable of getting the
disease, either because they are immune or because they lack the proper organs (e.g., biological
females cannot get testicular cancer). Furthermore, because you are establishing the number of
new cases, it is always necessary to include time-based units when reporting an incidence.

One way of calculating incidence is to include in the denominator the number of people who
were at risk of getting the condition at the start of your follow-up time period. This calculation
yields the incidence proportion. It’s also called, depending on which source you’re reading, the
cumulative incidence, or the risk.[vii]

Incidence Proportion =
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The incidence proportion is interpreted as the average risk (chance) of developing the disease over
some time period.

Incidence examples

Example 1 (Hypothetical Data)

If there are 25 students in a particular class, and one person came to class on Monday of the first week already
sick with the flu (this person is a prevalent case—they are already sick, so are not at risk), and 2 more people got
the flu on Wednesday of that same week, then what was the incidence of flu during Week 1?

Our numerator would be the number of new cases of flu—here, 2. The denominator is the population at risk, so
we must subtract out the student who already has the flu because they are not at risk. So the denominator is
24.

The incidence of flu in that class during Week 1 was thus:

2/24 = 0.083 = 8.3 per 100 per week

Although prevalence is usually expressed as a percent, for incidence we use “per 100,” “per 1,000,” “per 10,000,”
and so on. The precise power of 10 is not standardized; just choose one that gives you a whole(ish) number of
people: 8.3 per 100 is the same as 83 per 1,000.

Additionally, it is vital that you specify the time period over which you observed incidence, because
interpretation (e.g., how much of a problem this particular disease is) varies widely depending on time. For
instance, 2 cases of breast cancer per 100 women in one week are very different than 2 cases per 100 women in
20 years. The former might warrant public health intervention, while the latter almost certainly would not.

Example 2 (Hypothetical Data)

If we want to compare the incidences between 2 populations, it is important to express them in the same
power of 10 (e.g., both must be “per 100” or “per 1,000”) and also to convert them to cover the same time
frame.3

If City A has an incidence of norovirus of 25/1,000 per month and City B has an incidence of norovirus of 500/

3. We don’t need to worry about population size, because the incidence calculation accounts for those
denominators.
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10,000 per year, we cannot compare them. We must first convert one of the denominators and one of the time
frames so that they are comparable.

Here we’ll convert the numbers for City A. First, the denominator needs to be 10,000, not 1000. If we multiply
the incidence for City A by 10/10,4 the incidence in City A is now 250/10,000 per month.

Then we need to adjust the time frame—here by multiplying by 12 (as there are 12 months in a year). The
incidence in City A then becomes:

250 × 12 = 3000/10,000 per year

Compared to City B’s incidence of 500/10,000 per year, the incidence is higher in City A.

Some of you will have spotted a potentially questionable assumption made above: that the incidence in City
A—which was measured only over one month—is constant for the entire year. This may or may not actually be
true, and in real life, you would have to do a little digging to determine whether it was likely true or not before
declaring that norovirus was more common in City A. What if the 1-month data point was from an anomalous
month, when City A had a huge norovirus outbreak, for instance? This is not uncommon, because like flu,
norovirus is seasonal.

We have thus far been looking at incidences with a relatively straightforward population
calculation—for example, the number of students living in a particular dorm at a particular
time. The other kind of incidence is the incidence rate. Some epidemiology texts will call this the
incidence density.[vii] Importantly, the numerator is still the number of new cases observed over
a given period of time. But the denominator is now the sum of the person-time at risk.

The need for this “other” kind of incidence stems from the fact that populations are not static:
some people are born, others die, people move in and out. Thus if you quantify the population at
risk at the start of your observation window, you are at best only approximating the population,
particularly if you follow people for a year or more. Instead, we could look at each person in the
population and determine how long they were at risk. Figure 2-3 shows a hypothetical population
with 10 people, all of whom were at risk at the start of a 1-year follow-up observation period:

4. Recall from your Algebra classes that this is a legal maneuver, because 10/10 = 1, and you can
multiply numbers by 1 with impunity.
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Figure 2-3

Person 1 enrolled in the study January 1 and was followed through December 31 without
developing the disease of interest (they may have been diagnosed with other things, but if they
have not contracted the disease we’re studying, then they’re still at risk). Person 1 contributed 12
person-months at risk.

Person 2 enrolled January 1 and developed the disease at the end of August. Person 2 contributed
8 person-months at risk. Person 2 is still alive after August but can no longer contribute person-
time at risk because now they are a prevalent case.

Person 3 didn’t enroll until February 1 and was then followed for the rest of the year without
developing the disease of interest. Person 3 contributed 11 person-months at risk.
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Person 4 enrolled January 1 and developed the disease at the end of September. Person 4
contributed 9 person-months at risk.

Person 5 enrolled July 1 and did not develop the disease during follow-up. Person 5 contributed 6
person-months at risk.

Person 6 enrolled January 1 and was lost to follow-up at the end of April (this person could
have moved away, stopped returning calls, or maybe died of something else—these are called
competing risks). Person 6 contributed 4 person-months at risk. We can still count these months,
because during that time, Person 6 was in the study, and was still at risk—not knowing the
outcome (if they moved, etc.) or having their follow-up terminated because of death from a
competing risk does not negate the fact that we observed Person 6 for 4 months while they were
at risk.

Person 7 enrolled January 1 and was followed through December 31 without developing the disease
under investigation. Person 7 contributed 12 person-months at risk.

Person 8 enrolled March 1 and developed the disease at the end of June. Person 8 contributed 4
person-months at risk.

Person 9 enrolled in the study January 1 and was followed through December 31 without incident.
Person 9 contributed 12 person-months at risk.

Person 10 enrolled in the study April 1 and was followed through December 31 without incident.
Person 10 contributed 9 person-months at risk.

To calculate the incidence rate, then, our numerator is still the number of new cases we observed
during the follow-up time—here, there were 3 new cases (persons 2, 4, and 8). The denominator is
now the sum, in months, of the person-time at risk contributed by all participants.

Calculating Incidence Rate from Data in Figure 2-3

First sum the total person time at risk:

12 + 8 + 11 + 9 + 6 + 4 + 12 + 4 + 12 + 9 = 87 person-months at risk (PMAR)

Then calculate the incidence rate:

3/87 PMAR = 0.0345 per person-month (PM)

That looks a little ugly, so let’s move the decimal place:

3.45 per 100 person-months
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We could instead express this in terms of years by multiplying our original by 12 (because there are 12 months
in the year):

(0.0345 per PM)(12)= 0.414 per person-year

Finally, we could make it have at least one whole person:

4.14 per 10 person-years

In other words, in Figure 2-3, we observed 4.14 new cases of disease for every observed 10 person-years at risk.

The strengths of the person-time approach are that it allows a more nuanced view of the
population at risk and is more realistic: not everyone enrolls in a study on exactly day one, some
people experience competing risks or are lost to follow-up, and sometimes a case pops up almost
immediately, so that person contributes very little person-time to the denominator (whereas with
incidence proportion, they would add a full person).

Limitations of the person-time approach are that it is more complex, and it does not distinguish
between 100 people followed for one month (totaling 100 PM), 10 people followed for 10 months
(totaling 100 PM), and one person followed for 100 months (still totaling 100 PM). Additionally, loss
to follow-up is probably not random (this could also affect incidence proportion if people drop out
because they’re feeling poorly but before they are recorded as an incident case). It is thus useful
to state the time-period over which people were eligible to be followed (in Figure 2-3, one year).
Table 2-1 compares the two types of incidence.

Table 2-1: Comparison of incidence proportion and incidence rate

Incidence Proportion Incidence Rate

Numerator new cases over a period of time new cases over a period of time

Denominator number of people at risk at the
start sum of person-time at risk

You must: define the time frame report the person-time units

A.K.A.
risk
cumulative incidence
absolute risk

incidence density

Range 0-1 (it’s a proportion)5 0 to infinity
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Prior Person-Time at Risk

What about all that time before our study started? If we enroll a bunch of 50 year-olds who are at risk of heart
disease and follow them recording the person-time, why not also count the person-time at risk from prior to
study entry? Each person would yield an extra 50 years of person-time at risk!

We can’t do this because we are missing all of the prevalent cases. Some proportion of people develop heart
disease prior to age 50, and would thus not be eligible for our study. Without data on how many person-years
at risk those people had prior to developing heart disease, our incidence would be artificially low, because we
add 50 person-years at risk per person to the denominator without accounting for the entire population, which
includes some cases that are prevalent by age 50.

Uses of Incidence and Prevalence

As stated above, incidence is used to study the causes of disease. Prevalence is less useful for
this because the disease has already happened; we thus have no way of knowing whether the
disease or the exposure happened first (necessary for establishing causality). For instance, obesity
is associated with lower levels of physical activity—one possible scenario is that lower levels of
physical activity lead to obesity, secondary to an energy imbalance. However, another equally
possible scenario is that obesity came first and the person subsequently reduced their amount of
physical activity, possibly secondary to joint pain. Studying prevalent obesity cases does not allow
us to distinguish between these scenarios.

Incidence, on the other hand, can easily be used to study potential causes of disease. When
studying incidence, we know that everyone is disease-free at baseline, since we study only the
population at risk. Therefore, any exposures assessed at the beginning came before disease onset
by definition.

Prevalence is more useful as a way of assessing the disease burden in a particular community,
perhaps for purposes of resource allocation. For instance, state health departments in the
Northeast and upper-Midwest spend a portion of their budgets on Lyme disease prevention

5. if the numerator is the number of cases of a disease that you can get more than once, then
incidence proportion can be above 1, because the denominator is still people. For this reason, usually
we count only the first episode of a given disease.
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education (e.g., billboards about tucking your pants into your socks) because Lyme disease is quite
prevalent in those regions:

Figure 2-4
Source: https://www.cdc.gov/…/maps.html

However, the prevalence of Lyme disease in Colorado is extremely low; health departments in
Colorado would do well to spend their money elsewhere. Prevalence data are also useful for health
care administrators: if you know that 80% of your nursing home residents have dementia in some
form, then this has implications for staffing, standard operating procedures, and potentially even
for the layout and design of the space (pictorial signs on the walls to indicate the purposes of
rooms, for instance).
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Relationship between Incidence and Prevalence

As mentioned above, prevalence is affected by both the incidence (how many new cases pop up)
and the disease’s duration. If people live longer with a disease, then they remain prevalent cases
for longer. Thus

Here is an example:

Figure 2-5
Source: CDC Fact Sheet HIV in the United States, July 2010

Figure 2-5 shows the prevalence (blue line) and incidence (red dotted line) of HIV. In the early 1980s
at the beginning of this epidemic, before we knew what caused AIDS and before we knew that
condom use, screening blood donations, and universal precautions by health care personnel could
prevent the spread of the virus, the incidence kept going up. More people got infected, and then
they in turn infected others. However, we also could not treat HIV initially, and so people would
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die of AIDS within a few years. The early rise in prevalence is thus attributable solely to the rising
incidence. Then we discovered how to prevent new cases: thus, the incidence went down, and
while the prevalence took a couple years to catch up, it eventually leveled off. In 1996, access to
highly active antiretroviral treatments (HAART) became common,[viii] and it was now possible for
people to “live with HIV.” The increasing prevalence, starting in the late 1990s, is thus due entirely
to an increase in patient survival, or the average duration of illness (you can see that the incidence
is steady at that time).

Prevalence therefore comprises 2 characteristics of a disease within a population: the incidence
and the average survival time. A change in either one of these components would lead to a
change in prevalence; thus, when a change in prevalence is observed, the smart public health
professional pauses to consider whether the change is due to a change in the number of new cases
(incidence) or to a change in available treatments (and thus survival). One can see that a public
health department’s response to each of these scenarios would be different.

Summary

This chapter discusses 3 measures of disease frequency: counts, which are used for extremely
rare conditions; prevalence, which considers new and existing cases and is used for resource
allocation; and incidence, which considers only new cases and is used to study disease etiology.

Incidence can further be broken down into incidence proportion (which uses the number of people
at risk as the denominator) and the incidence rate (which uses the sum of the person-time at risk
as the denominator). Prevalence is approximately equal to the incidence multiplied by the average
survival time after diagnosis.
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3. Surveillance
KELLY JOHNSON AND MARIT L. BOVBJERG

Learning Objectives

After reading this chapter, you will be able to do the following:

1. Define epidemic and explain that word’s relationship to epidemiology
2. Define surveillance and explain how surveillance relates to epidemiology overall
3. Describe some common surveillance systems and methods used in the US
4. Explain the rationale behind notifiable condition reporting, and how this pertains to epidemics,

epidemiology, and surveillance

The root word for epidemiology is epidemic. An epidemic is “an increase, often sudden, in the
number of cases of disease above what is normally expected in that population in that area.”i

How do we know how much is “expected”? Surveillance!

Public health surveillance is defined by the World Health Organization (WHO) as

the continuous, systematic collection, analysis, and interpretation of health related data
needed for the planning, implementation, and evaluation of public health practice. Such
surveillance can (1) serve as an early warning system for impending public health
emergencies, (2) document the impact of an intervention, or track progress towards
specified goals, and (3) monitor and clarify the epidemiology of health problems, to allow
priorities to be set and to inform public health policy and strategies.ii

Surveillance activities can be either passive or active. In passive surveillance, the health
department passively receives reports of suspected injury or illness. Think of this as waiting for
disease reports to come to you. Many routine surveillance activities are passive—for instance,
systems keeping track of communicable diseases, cancer, and injuries. Epidemiologists collect
case reports that are sent to them by health care providers, laboratories, schools, or other
entities that are required by law to report this information. In active surveillance, on the other
hand, epidemiologists actively seek out cases of disease. For example, during an outbreak of
salmonellosis associated with a specific source (say, a restaurant), epidemiologists may contact
health care providers in the area and ask each for a list of patients seen with symptoms consistent
with salmonellosis. These patients are then contacted to see if they were exposed to the suspected
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source (here, the restaurant). National surveys, such as the National Health and Nutrition
Examination Survey (NHANES),iii are also considered active surveillance. The benefit of active
surveillance is that it generally results in more complete data, while passive surveillance relies on
others (who have numerous duties other than disease reporting) to report cases. The downside
to active surveillance is that it is more resource-intensive, with increased personnel and financial
requirements.iv

Some surveillance activities can be further characterized as population-based. The goal of
population-based surveillance is to find every case that occurs within a population, and it is
usually part of a mandated effort to collect cases of a specific condition of interest. An example
of a condition for which we do population-based surveillance is cancer. Cancer registries aim
to capture every case of cancer that occurs in the population the registry covers. This allows
clinicians and public health professionals to monitor for trends in diagnoses that might signify
a concerning change in the environment and/or for trends in survival that might follow
improvements in treatment.

When reporting a specific condition is not required by law, public health officials must estimate
incidence and prevalence in other ways. Sentinel surveillance involves case reporting from a
limited number of hand-picked reporting sites. This type of surveillance is conducted when high-
quality data are needed, passive systems are unable to provide these data, and resources are too
scarce for complete, population-based active surveillance.v For example, annual influenza virus
surveillance collects positive influenza specimens from a variety of selected sites each year for
genotyping. From these specimens, we are able to determine which strains of the influenza virus
are circulating each year and thus which strains to include in the annual influenza vaccine. Surveys
can also be used to conduct surveillance on a representative sample of the population.

Notifiable Conditions

There is a list of conditions—mostly infectious diseases, but a few chronic diseases and injuries
also make the list—that must be reported to the Centers for Disease Control and Prevention
(CDC) whenever they are encountered by clinicians or health department officials. For example,
say a patient presents to a primary care clinic complaining of high fever, cough, and watery eyes
followed by a full-body rash. The nurse practitioner who sees the patient diagnoses measles. This
clinic must then report the measles case to the local health department, who in turn reports it
to the state health department, who in turn reports it to the CDC. This reporting ideally happens
quickly, in a matter of days (or within hours for a potentially major threat).

The list of nationally notifiable conditions is reviewed every year or so and revised according to
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current public health threats and priorities. For instance, Zika virus and its associated congenital
conditions were added to the list in 2016. (The 2020 list of notifiable conditions can be found here.)

Some of the conditions on the list are extremely rare (human rabies, plague) or have even been
eradicated (small pox). However, they remain on the notifiable conditions list because in these
cases, our expected level (also called the endemic level) is 0, and these conditions are dangerous
enough that even one suspected case would be cause for an immediate public health intervention.

Each condition on the list has an associated set of case criteria, so after available evidence for a
given patient (including laboratory data, symptoms, relevant exposures, and physician diagnoses)
is collected, it is compared against the case criteria to either confirm or rule out a given case
report. These case criteria are in place to make sure that all epidemiologists are evaluating case
reports consistently. For example, the current case criteria for Lyme disease, last revised in 2017,
can be found here.

For most of the conditions, the reporting criteria specify that these are new cases so that
incidence can be calculated from these data. However, there are exceptions to this—hepatitis C is
challenging to identify in its initial stage because few patients exhibit symptoms,vi resulting in a
large number of hepatitis C infections that are identified during laboratory testing for something
unrelated or once symptoms of liver damage occur. For conditions like this, the CDC requests
notification of any newly diagnosed cases—regardless of whether they are also a new onset case.

The CDC publishes weekly data tabulating all reported cases of the notifiable conditions.1 Figure
3-1 shows a screenshot of the notifiable conditions tables for meningitis, in Oregon, during the
last few months of 2017.vii

1. It is important to note that underreporting is inherent in all passive surveillance systems, and the
notifiable condition data are no different.
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Figure 3-1

These cases were part of the epidemic of meningococcal meningitis that occurred at Oregon
State University (OSU) during the 2017/2018 academic year—the expected number of cases of
meningitis is 0, and the university, after consultation with the local and state health departments,
took action (requiring students age 25 and younger to be vaccinated before they could register for
classesviii) after only 6 cases were reported over the course of several weeks. The complete data
tables for the notifiable conditions can be found here.

Notifiable Conditions and Privacy

At this point, most people are familiar with the Health Insurance Portability and Accountability Act (HIPAA)
Privacy Rule (45 CFR 154.512[b]). This rule states that your health care provider cannot disclose details about
your health or the care that you received (collectively called protected health information) without your
permission, with some exceptions for insurance and payments, coordinating care with other providers, and so
on. Indeed, most clinics require that you acknowledge annually that they have informed you of their HIPAA-
compliant privacy policies. Many people are unaware, however, that public health functions such as notifiable
condition reporting are exempt from the HIPAA Privacy Rule. Indeed, the US Department of Health and Human
Services states on its website, “The HIPAA Privacy Rule recognizes the legitimate need for public health
authorities and others responsible for ensuring public health and safety to have access to protected health
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information to carry out their public health mission…Accordingly, the Rule permits covered entities to disclose
protected health information without authorization for specified public health purposes.”

Source: https://www.hhs.gov/hipaa/for-professionals/special-topics/public-health/index.html

Cancer Registries

Cancer is a notifiable condition and is worth its own mention, because generally cancer reporting
requirements are more extensive than those for other conditions. Depending on the state, a
physician who diagnoses a type of cancer (other than non-melanoma skin cancers) must report
extensive information to the health department, potentially including the type of tumor, the stage
at which it was diagnosed, histology information, treatments given, and the eventual outcome
(death, recurrence, etc.). Since cancer cases are reported upon diagnosis,2 this can also be a
potential source of incidence data, with the same caveats discussed above for hepatitis C (i.e., that
sometimes a diagnosis occurs quite late in the disease process). Cancer registries are somewhat
unique compared to other notifiable conditions data because patients are followed over time.
Several states contribute their cancer registry data to the Surveillance, Epidemiology, and End
Results (SEER) database,ix which is available for both surveillance and research purposes.

Vital Statistics

Birth and death certificates—together called vital statisticsx —constitute another ongoing
surveillance system. Local hospitals report births and deaths up to their state health departments,
who in turn report to the CDC. By keeping track of the health of newborns and childbearing
women, as well as causes of death for everyone, public health officials can spot potential emerging
trends that would warrant intervention. Annual reports summarizing all births and deaths that
occurred in the US, as well as any notable changes from previous years, can be found on the CDC’s
website here.

2. Cancer registries also include cases identified through autopsies/death certificates that were not
diagnosed while the person was alive. Since not everyone has an autopsy when they die,
undiagnosed cancers among people who have died are underreported.
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Survey-Based Surveillance Systems

The US conducts numerous surveillance activities that involve direct data collection from
individual residents, usually via questionnaires, although NHANES includes physical exam and
laboratory data as well. Other examples of surveillance include the Behavioral Risk Factor
Surveillance System (BRFSS),xi which is a telephone-based survey of adults, who are asked to self-
report their health and health behaviors; and the Pregnancy Risk Assessment Monitoring System
(PRAMS),xii which is a paper-based survey of women who have recently given birth, who report
on health and health care utilization for themselves and their newborn(s). Data from these surveys
are used by public health professionals to monitor trends over time—for instance, the map on
seat belt use shown in chapter 1 was made using BRFSS data—but they contain only data from
prevalent cases. On the plus side, the survey data are freely available to students and researchers,
and numerous articles are published each year using these datasets.

Conclusions

Surveillance activities allow epidemiologists and other public health professionals to monitor the
“usual” levels of disease in a population. The ultimate goal of surveillance is to notice potential
public health threats early so that a proper response can be mounted before a public health crisis
ensues. The US has numerous surveillance systems operating at any one time, and much of the
benefit from these systems develops as data are compared over time.
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4. Introduction to 2 x 2 Tables,
Epidemiologic Study Design, and Measures
of Association

Learning Objectives

After reading this chapter, you will be able to do the following:

1. Interpret data found in a 2 x 2 table
2. Compare and contrast the 4 most common types of epidemiologic studies: cohort studies, randomized

controlled trials, case-control studies, and cross-sectional studies
3. Calculate and interpret relative measures of association (risk ratios, rate ratios, odds ratios)
4. Explain which measures are preferred for which study designs and why
5. Discuss the differences between absolute and relative measures of association

In epidemiology, we are often concerned with the degree to which a particular exposure might
cause (or prevent) a particular disease. As detailed later in chapter 10, it is difficult to claim causal
effects from a single epidemiologic study; therefore, we say instead that exposures and diseases
are (or are not) statistically associated. This means that the exposure is disproportionately
distributed between individuals with and without the disease. The degree to which exposures and
health outcomes are associated is conveyed through a measure of association. Which measure
of association to choose depends on whether you are working with incidence or prevalence data,
which in turn depends on the type of study design used. This chapter will therefore provide a brief
outline of common epidemiologic study designs interwoven with a discussion of the appropriate
measure(s) of association for each. In chapter 9, we will return to study designs for a more in-
depth discussion of their strengths and weaknesses.
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Necessary First Step: 2 x 2 Notation

Before getting into study designs and measures of association, it is important to understand the
notation used in epidemiology to convey exposure and disease data: the 2 x 2 table. A 2 x 2 table
(or two-by-two table) is a compact summary of data for 2 variables from a study—namely, the
exposure and the health outcome. Say we do a 10-person study on smoking and hypertension, and
collect the following data, where Y indicates yes and N indicates no:

Table 4-1

Participant # Smoker? Hypertension?

1 Y Y

2 Y N

3 Y Y

4 Y Y

5 N N

6 N Y

7 N N

8 N N

9 N Y

10 N N

You can see that we have 4 smokers, 6 nonsmokers, 5 individuals with hypertension, and 5 without.
In this example, smoking is the exposure and hypertension is the health outcome, so we say
that the 4 smokers are “exposed” (E+), the 6 nonsmokers are “unexposed” (E−), the 5 people with
hypertension are “diseased” (D+), and the 5 people without hypertension are “nondiseased” (D−).
This information can be organized into a 2 × 2 table:

Table 4-2

D+ D-

E+ 3 1

E- 2 4

The 2 × 2 table summarizes the information from the longer table above so that you can quickly see
that 3 individuals were both exposed and diseased (persons 1, 3, and 4); one individual was exposed
but not diseased (person 2); two individuals were unexposed but diseased (persons 6 and 9); and
the remaining 4 individuals were neither exposed nor diseased (persons 5, 7, 8, and 10). Though it
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does not really matter whether exposure or disease is placed on the left or across the top of a 2 ×
2 table, the convention in epidemiology is to have exposure on the left and disease across the top.

When discussing 2 x 2 tables, epidemiologists use the following shorthand to refer to specific cells:

Table 4-3

D+ D-

E+ A B

E- C D

It is often helpful to calculate the margin totals for a 2 x 2 table:

Table 4-4

D+ D- Total

E+ 3 1 4

E- 2 4 6

Total 5 5 10

Or:

Table 4-5

D+ D- Total

E+ A B A+B

E- C D C+D

Total A+C B+D A+B+C+D

The margin totals are sometimes helpful when calculating various measures of association (and
to check yourself against the original data).

Continuous versus Categorical Variables

Continuous variables are things such as age or height, where the possible values for a given person are infinite,
or close to it. Categorical variables are things such as religion or favorite color, where there is a discrete list of
possible answers. Dichotomous variables are a special case of categorical variable where there are only 2
possible answers. It is possible to dichotomize a continuous variable—if you have an “age” variable, you could
split it into “old” and “young.” However, is it not always advisable to do this because a lot of information is lost.
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Furthermore, how does one decide where to dichotomize? Does “old” start at 40, or 65? Epidemiologists usually
prefer to leave continuous variables continuous to avoid having to make these judgment calls.

Nonetheless, having dichotomous variables (a person is either exposed or not, either diseased or not) makes
the math much easier to understand. For the purposes of this book, then, we will assume that all exposure and
disease data can be meaningfully dichotomized and placed into 2×2 tables.

Studies That Use Incidence Data

Cohorts

There are 4 types of epidemiologic studies that will be covered in this book,1 two of which collect
incidence data: prospective cohort studies and randomized controlled trials. Since these study
designs use incidence data, we instantly know 3 things about these study types. One, we are
looking for new cases of disease. Two, there is thus some longitudinal follow-up that must occur
to allow for these new cases to develop. Three, we must start with those who were at risk (i.e.,
without the disease or health outcome) as our baseline.

The procedure for a prospective cohort study (hereafter referred to as just a “cohort study,”
though see the inset box on retrospective cohort studies later in this chapter) begins with the
target population, which contains both diseased and non-diseased individuals:

1. These 4 study designs are the basis for nearly all others (e.g., case-crossover studies are a subtype of
case-control studies). A few additional designs are covered in chapter 9, but a firm understanding of
the 4 designs covered in this chapter will set beginning epidemiology students up to be able to
critically read essentially all of the literature.
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Figure 4-1

As discussed in chapter 1, we rarely conduct studies on entire populations because they are too big
for it to be logistically feasible to study everyone in the population. Therefore we draw a sample
and perform the study with the individuals in the sample. For a cohort study, since we will be
calculating incidence, we must start with individuals who are at risk of the outcome. We thus draw
a non-diseased sample from the target population:
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Figure 4-2

The next step is to assess the exposure status of the individuals in our sample and determine
whether they are exposed or not:

Figure 4-3
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After assessing which participants were exposed, our 2 x 2 table (using the 10-person smoking/
HTN data example from above) would look like this:

Table 4-6

D+ D- Total

E+ 0 4 4

E- 0 6 6

Total 0 10 10

By definition, at the beginning of a cohort study, everyone is still at risk of developing the disease,
and therefore there are no individuals in the D+ column. In this hypothetical example, based on
the data above, we will observe 5 cases of incident hypertension as the study progresses–but at
the beginning, none of these cases have yet occurred.

We then follow the participants in our study for some length of time and observe incident cases as
they arise.

Figure 4-4

As mentioned in chapter 2, the length of follow-up varies depending on the disease process in
question. For a research question regarding childhood exposure and late-onset cancer, the length
of follow-up would be decades. For an infectious disease outbreak, the length of follow-up might
be a matter of days or even hours, depending on the incubation period of the particular disease.

Assuming we are calculating incidence proportions (which use the number of people at risk in the
denominator) in our cohort, our 2 × 2 table at the end of the smoking/HTN study would look like
this:
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Table 4-7

D+ D- Total

E+ 3 1 4

E- 2 4 6

Total 5 5 10

It is important to recognize that when epidemiologists talk about a 2 × 2 table from a cohort study,
they mean the 2 × 2 table at the end of the study—the 2 × 2 table from the beginning was much less
interesting, as the D+ column was empty!

From this 2 × 2 table, we can calculate a number of useful measures, detailed below.

Calculating the Risk Ratio from the Hypothetical Smoking/Hypertension Cohort Study

We can start by calculating the overall incidence of disease in our sample (assume that our smoking/HTN study
included 10 years of follow-up):

Incidence proportion = = 50 cases per 100 people in

10 years

Using ABCD notation for a 2 x 2 table, the formula for the overall incidence proportion is:

We can also calculate the incidence only among exposed individuals:

IE+ = = 75 per 100 in 10 years

Likewise, we can calculate the incidence only among unexposed individuals:

IE- = = 33 per 100 in 10 years

Recall that our original goal with the cohort study was to see whether exposure is associated with disease. We
thus need to compare the IE+ to the IE-. The most common way of doing this is to calculate their combined
ratio:

Risk Ratio = = 2.27
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Using ABCD notation, the formula for RR is:

Note that risk ratios (RR) have no units, because the time-dependent units for the 2 incidences cancel out.

If the RR is greater than 1, it means that we observed more disease in the exposed group than in
the unexposed group. Likewise, if the RR is less than 1, it means that we observed less disease in
the exposed group than in the unexposed group. If we assume causality, an exposure with an RR
< 1 is preventing disease, and an exposure with an RR > 1 is causing disease. The null value for a
risk ratio is 1.0, which would mean that there was no observed association between exposure and
disease. You can see how this would be the case—if the incidence was identical in the exposed and
unexposed groups, then the RR would be 1, since x divided by x is 1.

Because the null value is 1.0, one must be careful if using the words higher or lower when
interpreting RRs. For instance, an RR of 2.0 means that the disease is twice as common, or twice
as high, in the exposed compared to the unexposed—not that it is 2 times more common, or 2
times higher, which would be an RR of 3.0 (since the null value is 1, not 0). If you do not see the
distinction between these, don’t sweat it—just memorize and use the template sentence below,
and your interpretation will be correct.

The correct interpretation of an RR is:

“The risk of [disease] was [RR] times as high in [exposed] compared to [unexposed] over [x] days/months/
years.”

Using our smoking/HTN example:

“The risk of hypertension was 2.27 times as high in smokers compared to nonsmokers over 10 years.”

The key phrase is times as high; with it, the template sentence works regardless of whether the RR
is above or below 1. For an RR of 0.5, saying “0.5 times as high” means that you multiply the risk in
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the unexposed by 0.5 to get the risk in the exposed, yielding a lower incidence in the exposed—as
one expects with an RR < 1.

If our cohort study instead used a person-time approach, the 2 x 2 table at the end of the study
would have a column for sum of the person-time at risk (PTAR):

Table 4-8

D+ D- Total Σ PTAR

E+ 3 1 4 27.3 PY

E- 2 4 6 52.9 PY

Total 5 5 10 80.2 PY

Calculating the Rate Ratio from the Hypothetical Smoking/Hypertension Cohort Study

Using a person-time denominator, the incidence rate for the overall study is:

I = = 6.2 per 100 person-years

Likewise, the incidence rate among exposed persons is:

IE+ = = 11.0 per 100 person-years

And the incidence among unexposed persons is:

IE+ = = 3.8 per 100 person-years

We again take the ratio of incidence in the exposed to incidence in the unexposed, this time calculating a rate
ratio (also abbreviated RR):

RR = = 2.9

As when using incidence proportions, the units cancel out, and we are left with just a number.

The interpretation is the same as it would be for the risk ratio; one just needs to substitute the
word rate for the word risk:

The rate of hypertension was 2.9 times as high in smokers compared to non-smokers, over 10 years.

Notice that the interpretation sentence still includes the duration of the study, even though some
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individuals (the 4 who developed hypertension) were censored before that time. This is because
knowing how long people were followed for (and thus given time to develop disease) is still
important when interpreting the findings. As discussed in chapter 2, 100 years of person-time can
be accumulated in any number of different ways; knowing that the duration of the study was 10
years (rather than 1 year or 50 years) might make a difference in terms of how (or if) one applies
the findings in practice.

“Relative Risk”

Both the risk ratio and the rate ratio are abbreviated RR. This abbreviation (and the risk ratio and/or rate ratio)
is often referred to by epidemiologists as relative risk. This is an example of inconsistent lexicon in the field of
epidemiology; in this book, I use risk ratio and rate ratio separately (rather than relative risk as an umbrella
term) because it is helpful, in my opinion, to distinguish between studies using the population at risk vs. those
using a person-time at risk approach. Regardless, a measure of association called RR is always calculated as
incidence in the exposed divided by incidence in the unexposed.

Retrospective Cohort Studies

Throughout this book, I will focus on prospective cohort studies. One can also conduct a retrospective cohort
study, mentioned here because public health and clinical practitioners will encounter retrospective cohort
studies in the literature. In theory, a retrospective cohort study is conducted exactly like a prospective cohort
study: one begins with a non-diseased sample from the target population, determines who was exposed, and
“follows” the sample for x days/months/years, looking for incident cases of disease. The difference is that, for a
retrospective cohort study, all this has already happened, and one reconstructs this information using existing
records. The most common way to do retrospective cohort studies is by using employment records (which
often have job descriptions useful for surmising exposure—for instance, the floor manager was probably
exposed to whatever chemicals were on the factory floor, whereas human resource officers probably were not),
medical records, or other administrative datasets (e.g., military records).

Continuing with our smoking/HTN 10-year cohort example, one might do a retrospective cohort using medical
records as follows:

• Go back to all the records from 10 years ago and determine who already had hypertension (these people
are not at risk and are therefore not eligible) or otherwise does not meet the sample inclusion criteria

• Determine, among those at risk 10 years ago, which individuals were smokers
• Determine which members of the sample then developed hypertension during the intervening 10 years

Retrospective cohorts are analyzed just like prospective cohorts—that is, by calculating rate ratios or risk ratios.
However, for beginning epidemiology students, retrospective cohorts are often confused with case-control
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studies; therefore we will focus exclusively on prospective cohorts for the remainder of this book. (Indeed,
occasionally even seasoned scientists are confused about the difference!)i

Randomized Controlled Trials

The procedure for a randomized controlled trial (RCT) is exactly the same as the procedure
for a prospective cohort, with one exception: instead of allowing participants to self-select into
“exposed” and “unexposed” groups, the investigator in an RCT randomly assigns some participants
(usually half) to “exposed” and the other half to “unexposed.” In other words, exposure status
is determined entirely by chance. This is the type of study required by the Food and Drug
Administration for approval of new drugs: half of the participants in the study are randomly
assigned to the new drug and half to the old drug (or to a placebo, if the drug is intended to treat
something previously untreatable). The diagram for an RCT is as follows:

Figure 4-5

Note that the only difference between an RCT and a prospective cohort is the first box: instead of
measuring existing exposures, we now tell people whether they will be exposed or not. We are still
measuring incident disease, and we are therefore still calculating either the risk ratio or the rate
ratio.
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Observational versus Experimental Studies

Cohort studies are a subclass of observational studies, meaning the researcher is merely observing what
happens in real life—people in the study self-select into being exposed or not depending on their personal
preferences and life circumstances. The researcher then measures and records a given person’s level of
exposure. Cross-sectional and case-control studies are also observational. Randomized controlled trials, on the
other hand, are experimental studies—the researcher is conducting an experiment that involves telling people
whether they will be exposed to a condition or not (e.g., to a new drug).

Studies That Use Prevalence Data

Following participants while waiting for incident cases of disease is expensive and time-
consuming. Often, epidemiologists need a faster (and cheaper) answer to their question about a
particular exposure/disease combination. One might instead take advantage of prevalent cases
of disease, which by definition have already occurred and therefore require no wait. There are 2
such designs that I will cover: cross-sectional studies and case-control studies. For both of these,
since we are not using incident cases, we cannot calculate the RR, because we have no data on
incidence. We instead calculate the odds ratio (OR).

Cross-sectional

Cross-sectional studies are often referred to as snapshot or prevalence studies: one takes a
“snapshot” at a particular point in time, determining who is exposed and who is diseased
simultaneously. The following is a visual:
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Figure 4-6

Note that the sample is now no longer composed entirely of those at risk because we are using
prevalent cases—thus by definition, some proportion of the sample will be diseased at baseline. As
mentioned, we cannot calculate the RR in this scenario, so instead we calculate the OR.

Calculating the Odds Ratio from the Hypothetical Smoking/Hypertension Cross-Sectional Study

The formula for OR for a cross-sectional study is:

OR =

The odds of an event is defined statistically as the number of people who experienced an event divided by the
number of people who did not experience it. Using 2 × 2 notation, the formula for OR is:

OR =

For our smoking/HTN example, if we assume those data came from a cross-sectional study, the OR would be:

OR = = 6.0
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Again there are no units.

The interpretation of an OR is the same as that of an RR, with the word odds substituted for risk:

The odds of hypertension were 6.0 times as high in smokers compared to nonsmokers.

Note that we now no longer mention time, as these data came from a cross-sectional study, which
does not involve time. As with interpretation of RRs, ORs greater than 1 mean the exposure is more
common among diseased, and ORs less than 1 mean the exposure is less common among diseased.
The null value is again 1.0.

For 2 x 2 tables from cross-sectional studies, one can additionally calculate the overall
prevalence of disease as

Prevalence =

Finally, some authors will refer to the OR in a cross-sectional study as the prevalence odds
ratio—presumably, just as a reminder that cross-sectional studies are conducted on prevalent
cases. The calculation of such a measure is exactly the same as the OR as presented above.

OR versus RR

As you can see from the (hypothetical) example data in this chapter, the OR will always be further from the null
value than the RR. The more common the disease, the more this is true. If the disease has a prevalence of about
5% or less, then the OR does provide a close approximation of the RR; however, as the disease in question
becomes more common (as in this example, with a hypertension prevalence of 40%), the OR deviates further
and further from the RR.

Occasionally, you will see a cohort study (or very rarely, an RCT) that reports the OR instead of the RR.
Technically this is not correct, because cohorts and RCTs use incident cases, so the best choice for a measure
of association is the RR. However, one common statistical modeling technique—logistic
regression—automatically calculates ORs. While it is possible to back-calculate the RR from these numbers,
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often investigators do not bother and instead just report the OR. This is troublesome for a couple of reasons:
first, it is easier for human brains to interpret risks as opposed to odds, and therefore risks should be used
when possible; and second, cohort studies and RCTs almost always have relatively common outcomes (see
chapter 9), thus reporting the OR makes it seem as if the exposure is a bigger problem (or a better solution, if
OR < 1) than it “really” is.

Case-Control

The final type of epidemiologic study that is commonly used is the case-control study. It also
begins with prevalent cases and thus is faster and cheaper than longitudinal (prospective cohort
or RCT) designs. To conduct a case-control study, one first draws a sample of diseased individuals
(cases):

Figure 4-7

Then a sample of nondiseased individuals (controls):
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Figure 4-8

First and foremost, note that both cases and controls come from the same underlying population.
This is extremely important, lest a researcher conduct a biased case-control study (see chapter 9
for more on this). After sampling cases and controls, one measures exposures at some point in the
past. This might be yesterday (for a foodborne illness) or decades ago (for osteoporosis):
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Figure 4-9

Again, we cannot calculate incidence because we are using prevalent cases, so instead we calculate
the OR in the same manner as above. The interpretation is identical, but now we must refer to the
time period because we explicitly looked at past exposure data:

The odds of hypertension are 6.0 times as high in people who were smokers 10 years ago, compared to
people who were nonsmokers 10 years ago.

Note, however, that one cannot calculate the overall sample prevalence using a 2 × 2 table from
a case-control study, because we artificially set the prevalence in our sample (usually at 50%) by
deliberately choosing individuals who were diseased for our cases.

Exposure OR versus Disease OR

Technically, for a case-control study, one calculates the disease OR rather than the exposure OR (which is
presented under cross-sectional studies). In other words, since in case-control studies we begin with disease,
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we are calculating the odds of being exposed among those who are diseased compared to the odds of being
exposed among those who are not diseased:

ORdisease

The exposure odds ratio, you will remember, calculates the odds of being diseased among those who are
exposed, compared to the odds of being diseased among those who are unexposed:

ORexposure

In advanced epidemiology classes, one is expected to appreciate the nuances of this difference and to
articulate the rationale behind it. However, since both the exposure and the disease odds ratios simplify to the
same final equation, here we will not differentiate between them. The interpretation is the same: an OR > 1
means that disease is more common in the exposed group (or exposure is more common in the diseased
group—same thing), and an OR < 1 means that disease is less common in the exposed group (or exposure is less
common in the diseased group—again, same thing).

Risk Difference

RR and OR are known as relative or ratio measures of association for obvious reasons. These measures can be
misleading, however, if the absolute risks (incidences) are small.2 For example, if a cohort study was done, and
investigators observed an incidence in the exposed of 1 per 1,000,000 in 20 years and an incidence in the
unexposed, and an incidence in the unexposed of 2 per 1,000,000 in 20 years, the RR would be 0.5: there is a
50% reduction in disease in the exposed group. Break out the public health intervention! However, this ratio
measure masks an important truth: the absolute difference in risk is quite small: 1 in a million.

To address this issue, epidemiologists sometimes calculate instead the risk difference instead:

RD = IE+ – I E-

Unfortunately, this absolute measure of association is not often seen in the literature, perhaps because
interpretation implies causation more explicitly or because it is more difficult to control for confounding
variables (see chapter 7) when calculating difference measures.

Regardless, in our smoking/HTN example, the RD is:

RD = IE+ – I E- = 75 per 100 in 10 years – 33 per 100 in 10 years = 42 per 100 in 10 years

2. Declercq E. The absolute power of relative risk in debates on repeat cesareans and home birth in the
United States. J Clin Ethics. 2013;24(3):215-224
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Note that the RD has the same units as incidence, since units do not cancel when subtracting. The
interpretation is as follows:

Over 10 years, the excess number of cases of HTN attributable to smoking is 42; the remaining
33 would have occurred anyway.

You can see how this interpretation assigns a more explicitly causal role to the exposure.

More common (but still not nearly as common as the ratio measures) are a pair of measures derived from the
RD: the attributable risk (AR) and the number needed to treat/number needed to harm (NNT/NNH).

The AR is calculated as RD/IE+. Here,

AR = 42 per 100 in 10 years / 75 per 100 in 10 years = 56%

Interpretation:

56% of cases can be attributed to smoking, and the rest would have happened anyway.

Again this implies causality; furthermore, because diseases all have more than one cause (see chapter 10), the
ARs for each possible cause will sum to well over 100%, making this measure less useful.

Finally, calculating NNT/NNH (both of which are similar, with the former being for preventive exposures and
the latter for harmful ones) is simple:

NNT = 1/RD

In our example,

NNH = 1 / 42 per 100 per 10 years = 1/0.42 per 10 years = 2.4

Interpretation:

Over 10 years, for every 2.4 smokers, 1 will develop hypertension.

For a protective exposure, the NNT (commonly used in clinical circles) is interpreted as the number you need to
treat in order to prevent one case of a bad outcome. For harmful exposures, as in our smoking/HTN example,
it is the number needed to be exposed to cause one bad outcome. For many drugs in common use, the NNTs
are in the hundreds or even thousands.[iii][iv]

Conclusions

Epidemiologic data are often summarized in 2 × 2 tables. There are 2 main measures of association
commonly used in epidemiology: the risk ratio/rate ratio (relative risk) and the odds ratio. The
former is calculated for study designs that collect data on incidence: cohorts and RCTs. The
latter is calculated for study designs that use prevalent cases: cross-sectional studies and case-
control studies. Absolute measures of association (e.g., risk difference) are not seen as often
in epidemiologic literature, but it is nonetheless always important to keep the absolute risks
(incidences) in mind when interpreting results.

Below is a table summarizing the concepts from this chapter:
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Study Design Methods Summary Incident or Prevalent
Cases?

Preferred Measure of
Association

Cohort
Start with a nondiseased
sample, determine
exposure, follow over
time.

Incident Risk ratio or rate ratio

RCT
Start with a nondiseased
sample, assign exposure,
follow over time

Incident Risk ratio or rate ratio

Case-Control

Start with diseased
(cases), recruit
comparable nondiseased
(controls), look at
previous exposures

Prevalent Odds ratio

Cross-sectional
From a sample, assess
both exposure status
and disease status
simultaneously

Prevalent Odds ratio
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5. Random Error

Learning Objectives

After reading this chapter, you will be able to do the following:

1. Define random error and differentiate it from bias
2. Illustrate random error with examples
3. Interpret a p-value
4. Interpret a confidence interval
5. Differentiate between type 1 and type 2 statistical errors and explain how they apply to epidemiologic

research
6. Describe how statistical power affects research

In this chapter, we will cover random error—where it comes from, how we deal with it, and what
it means for epidemiology.

What Is Random Error?

First and foremost, random error is not bias. Bias is systematic error and is covered in further
detail in chapter 6.

Random error is just what it sounds like: random errors in the data. All data contain random errors,
because no measurement system is perfect. The magnitude of random errors depends partly on
the scale on which something is measured (errors in molecular-level measurements would be
on the order of nanometers, whereas errors in human height measurements are probably on
the order of a centimeter or two) and partly on the quality of the tools being used. Physics and
chemistry labs have highly accurate, expensive scales that can measure mass to the nearest gram,
microgram, or nanogram, whereas the average scale in someone’s bathroom is probably accurate
within a half-pound or pound.

To wrap your head around random error, imagine that you are baking a cake that requires 6
tablespoons of butter. To get the 6 tablespoons of butter (three-quarters of a stick, if there are
4 sticks in a pound, as is usually true in the US), you could use the marks that appear on the
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waxed paper around the stick, assuming they are lined up correctly. Or you could perhaps follow
my mother’s method, which is to unwrap the stick, make a slight mark at what looks like one-
half of the stick, and then get to three-quarters by eyeballing half of the one-half. Or you could
use my method, which is to eyeball the three-quarter mark from the start and slice away. Any of
these “measurement” methods will give you roughly 6 tablespoons of butter, which is certainly
good enough for the purposes of baking a cake—but probably not exactly 3 ounces’ worth, which
is how much 6 tablespoons of butter weighs in the US.[i] The extent to which you’re slightly over
3 ounces this time and perhaps slightly under 3 ounces next time is causing random error in
your measurement of butter. If you always underestimated or always overestimated, then that
would be a bias—however, your consistently under- or overestimated measurements would within
themselves contain random error.

Inherent Variability

For any given variable that we might want to measure in epidemiology (e.g., height, GPA, heart rate, number of
years working at a particular factory, serum triglyceride level, etc.), we expect there to be variability in the
sample—that is, we do not expect everyone in the population to have exactly the same value. This is not
random error. Random error (and bias) occurs when we try to measure these things. Indeed, epidemiology as a
field relies on this inherent variability. If everyone were exactly the same, then we would not be able to identify
which kinds of people were at higher risk for developing a particular disease.

In epidemiology, sometimes our measurements rely on a human other than the study participant
measuring something on or about the participant. Examples would include measured height
or weight, blood pressure, or serum cholesterol. For some of these (e.g., weight and serum
cholesterol), the random error creeps into the data because of the instrument being used—here,
a scale that has probably a half-pound fluctuation, or a laboratory assay with a margin of error
of a few milligrams per deciliter. For other measurements (e.g., height and blood pressure), the
measurer themselves is responsible for any random error, as in the butter example.

However, many of our measurements rely on participant self-reporting. There are whole
textbooks and classes devoted to questionnaire design, and the science behind how to get the
most accurate data from people via survey methods is quite good. The Pew Research Center offers
a nice introductory tutorial on questionnaire design on its website.

Relevant to our discussion here, random error will appear in questionnaire data as well. For some
variables, there will be less random error than others (e.g., self-reported race is probably quite
accurate), but there will still be some—for example, people accidentally checking the wrong box.
For other variables, there will be more random error (e.g., imprecise answers to questions such
as, “In the last year, how many times per month did you eat rice?”). A good question to ask
yourself when considering the amount of random error that might be in a variable derived from
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a questionnaire is, “Can people tell me this?” Most people could theoretically tell you how much
sleep they got last night, but they would be hard-pressed to tell you how much sleep they got on
the same night one year ago. Whether or not they will tell you is a different matter and touches
on bias (see chapter 6). Regardless, random error in questionnaire data increases as the likelihood
that people could tell you the answer decreases.

Quantifying Random Error

While we can—and should—work to minimize random error (using high-quality instruments,
training staff on how to take measurements, designing good questionnaires, etc.), it can never be
eliminated entirely. Luckily, we can use statistics to quantify the random errors present in a study.
Indeed, this is what statistics is for. In this book, I will cover only a small slice of the vast field of
statistics: interpretation of p-values and confidence intervals (CI). Rather than focus on how to
calculate them1, I will instead focus on what they mean (and what they do not mean). Knowledge
of p-values and CIs is sufficient to allow accurate interpretation of the results of epidemiologic
studies for beginning epidemiology students.

p-values

When conducting scientific research of any kind, including epidemiology, one begins with a
hypothesis, which is then tested as the study is conducted. For example, if we are studying average
height of undergraduate students, our hypothesis (usually indicated by H1) might be that male
students are, on average, taller than female students. However, for statistical testing purposes,
we must rephrase our hypothesis as a null hypothesis2. In this case, our null hypothesis (usually
indicated by H0) would be the following:

1. There isn’t just one formula for calculating a p-value or a CI. Rather, the formulas change depending
on which statistical test is being applied. Any introductory biostatistics text that discusses which
statistical methods to use and when would also provide the corresponding information on p-value
and CI calculation.

2. Don’t spend too long trying to figure out why we need a null hypothesis; we just do. The rationale is
buried in centuries of academic philosophy of science arguments.
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H0: There is no difference in mean height between male and female undergraduate students.

We would then undertake our study to test this hypothesis. We first determine the target
population (undergraduate students) and draw a sample from this population. We then measure
the heights and genders of everyone in the sample, and calculate mean height among men versus
that among women. We would then conduct a statistical test to compare the mean heights in the
2 groups. Because we have a continuous variable (height) measured in 2 groups (men and women),
we would use a t-test3, and the t-statistic calculated via this test would have a corresponding
p-value, which is what we really care about.

A p-value is the probability that if you repeated the study, you would find a result at least as extreme,
assuming the null hypothesis is true.

Let’s say that in our study we find that male students average 5 feet 10 inches, and among female
students the mean height is 5 feet 6 inches (for a difference of 4 inches), and we calculate a p-value
of 0.04. This means that if there really is no difference in average height between male students
and female students (i.e., if the null hypothesis is true) and we repeat the study (all the way back
to drawing a new sample from the population), there is a 4% chance that we will again find a
difference in mean height of 4 inches or more.

There are several implications that stem from the above paragraph. First, in epidemiology we
always calculate 2-tailed p-values. Here this simply means that the 4% chance of a ≥4 inch height
difference says nothing about which group is taller—just that one group (either males or females)
will be taller on average by at least 4 inches. Second, p-values are meaningless if you happen to
be able to enroll the entire population in your study. As an example, say our research question
pertains to students in Public Health 425 (H425, Foundations of Epidemiology) during the 2020
winter term at Oregon State University (OSU). Are men or women taller in this population? As the
population is quite small and all members are easily identified, we can enroll everyone instead of
having to rely on a sample. There will still be random error in the measurement of height, but we
no longer use a p-value to quantify it. This is because if we were to repeat the study, we would
find exactly the same thing, since we actually measured everyone in the population. P-values only
apply if we are working with samples.

3. How to choose the correct test is beyond the scope of this book—see any book on introductory
biostatistics
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Finally, note that the p-value describes the probability of your data, assuming the null hypothesis
is true—it does not describe the probability of the null hypothesis being true given your data. This
is a common interpretation mistake made by both beginning and senior readers of epidemiologic
studies. The p-value says nothing about how likely it is that the null hypothesis is true (and thus
on the flip side, about the truth of your actual hypothesis). Rather, it quantifies the likelihood of
getting the data that you got if the null hypothesis did happen to be true. This is a subtle distinction
but a very important one.

Statistical Significance

What happens next? We have a p-value, which tells us the chance of getting our data given the null
hypothesis. But what does that actually mean in terms of what to conclude about a study’s results?
In public health and clinical research, the standard practice is to use p ≤ 0.05 to indicate statistical
significance. In other words, decades of researchers in this field have collectively decided that
if the chance of committing a type I error (more on that below) is 5% or less, we will “reject
the null hypothesis.” Continuing height example from above, we would thus conclude that there
is a difference in height between genders, at least among undergraduate students. For p-values
above 0.05, we “fail to reject the null hypothesis,” and instead conclude that our data provided no
evidence that there was a difference in height between male and female undergraduate students.

Failing to Reject the Null vs. Accepting the Null

If p > 0.05, we fail to reject the null hypothesis. We do not ever accept the null hypothesis because it is very
difficult to prove the absence of something. “Accepting” the null hypothesis implies that we have proven that
there really is no difference in height between male and female students, which is not what happened. If p >
0.05, it merely means that we did not find evidence in opposition to the null hypothesis—not that said evidence
doesn’t exist. We might have gotten a weird sample, we might have had too small a sample, etc. There is a
whole field of clinical research (comparative effectiveness researchvi) dedicated to showing that one treatment
is no better or worse than another; the field’s methods are complex, and the sample sizes required are quite
large. For most epidemiologic studies, we simply stick to failing to reject.

Is the p ≤ 0.05 cutoff arbitrary? Absolutely. This is worth keeping in mind, particularly for p-values
very near this cutoff. Is 0.49 really that different from 0.51? Likely not, but they are on opposite
sides of that arbitrary line. The size of a p-value depends on 3 things: the sample size, the effect
size (it is easier to reject the null hypothesis if the true difference in height—were we to measure
everyone in the population, rather than only our sample—is 6 inches rather than 2 inches), and the

Foundations of Epidemiology | 63



consistency of the data, most commonly measured by the standard deviations around the mean
heights in the 2 groups. Thus a p-value of 0.51 could almost certainly be made smaller by simply
enrolling more people in the study (this pertains to power, which is the inverse of type II error,
discussed below). It is important to keep this fact in mind when you read studies.

Frequentist versus Bayesian Statistics

Statistical significance testing is part of a branch of statistics referred to as frequentist statistics.ii Though
extremely common in epidemiology and related fields, this practice is not generally regarded as an ideal
science, for a number of reasons. First and foremost, the 0.05 cutoff is entirely arbitrary,iii and strict
significance testing would reject the null for p = 0.049 but fail to reject for p = 0.051, even though they are
nearly identical. Second, there are many more nuances to interpretation of p-values and confidence intervals
than those I have covered in this chapter.iv For instance, the p-value is really testing all analysis assumptions,
not just the null hypothesis, and a large p-value often indicates merely that the data cannot discriminate among
numerous competing hypotheses. However, since public health and clinical medicine both require yes-or-no
decisions (Should we spend resources on that health education campaign? Should this patient get this
medication?), there needs to be some system for deciding yay or nay, and statistical significance testing is
currently it. There are other ways of quantifying random error, and indeed Bayesian statistics (which instead of
a yes-or-no answer yields a probability of something happening)ii is becoming more and more popular.
Nonetheless, as frequentist statistics and null hypothesis testing are still by far the most common methods
used in epidemiologic literature, they are the focus of this chapter.

Type I and Type II errors

A type I error (usually symbolized by α, the Greek letter alpha, and closely related to p-values)
is the probability that you incorrectly reject the null hypothesis – in other words, that you “find”
something that’s not really there. By choosing 0.05 as our statistical significance cut-off, we in the
public health and clinical research fields have tacitly agreed that we are willing to accept that 5%
of our findings will really be type I errors, or false positives.

A type II error (usually symbolized by β, the Greek letter beta) is the opposite: β is the probability
that you incorrectly fail to reject the null hypothesis—in other words, you miss something that
really is there.

Power = 1 – β and is interpreted as the likelihood that you’ll find things if they are there.
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Power in epidemiologic studies varies widely: ideally it should be at least 90% (meaning the type
II error rate is 10%), but often it is much lower. Power is proportional to sample size but in an
exponential manner—power goes up as sample size goes up, but to get from 90 to 95% power
requires a much larger jump in sample size than to go from 40 to 45% power. If a study fails to
reject the null hypothesis, but the data look like there might be a large difference between groups,
often the issue is that the study was underpowered, and with a larger sample, the p-value would
probably fall below the magic 0.05 cutoff. On the other hand, part of the issue with small samples
is that you might just by chance have gotten a non-representative sample, and adding additional
participants would not drive the results toward statistical significance. As an example, suppose
we are again interested in gender-based height differences, but this time only among collegiate
athletes. We begin with a very small study—just one men’s team and one women’s team. If we
happen to choose, say, the men’s basketball team and the women’s gymnastics team, we are likely
to find a whopping difference in mean heights—perhaps 18 inches or more. Adding other teams to
our study would almost certainly result in a much narrower difference in mean heights, and the 18
inch difference “found” in our initial small study would not hold up over time.

Confidence Intervals

Because we have set the acceptable level at 5%, in epidemiology and related fields, we most
commonly use 95% confidence intervals (95% CI). One can use a 95% CI to do significance testing:
if the 95% CI does not include the null value (0 for risk difference and 1.0 for odds ratios, risk ratios,
and rate ratios), then p < 0.05, and the result is statistically significant.

Though 95% CI can be used for significance testing, they contain much more information than just
whether the p-value is <0.05 or not. Most epidemiologic studies report 95% CI around any point
estimates that are presented. The correct interpretation of a 95% CI is as follows:

If you repeated the study 100 times (back to drawing your sample from the population), and the study is free
of all bias, then 95 of those 100 times the CI that you calculate would include the “real” answer that you
would get were you able to enroll everyone in the population.

We can also illustrate this visually:
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Figure 5-1
Source: https://es.wikipedia.org/wiki/Intervalo_de_confianza

In Figure 5-1, the population parameter μ represents the “real” answer that you would get if you
could enroll absolutely everyone in the population in the study. We estimate μ with data from
our sample. Continuing with our height example, this might be 5 inches: if we could magically
measure the heights of every single undergraduate student in the US (or the world, depending on
how you defined your target population), the mean difference between male and female students
would be 5 inches. Importantly, this population parameter is almost always unobservable—it only
becomes observable if you define your population narrowly enough that you can enroll everyone.
Each blue vertical line represents the CI of an individual “study”—50 of them, in this case. The CIs
vary because the sample is slightly different each time—however, most of the CIs (all but 3, in fact)
do contain μ.

If we conduct our study and find a mean difference of 4 inches (95% CI, 1.5 – 7), the CI tells us
2 things. First, the p-value for our t-test would be <0.05, since the CI excludes 0 (the null value
in this case, as we are calculating a difference measure). Second, the interpretation of the CI is:
if we repeated our study (including drawing a new sample) 100 times, then 95 of those times
our CI would include the real value (which we know here is 5 inches, but which in real life you
would not know). Thus looking at the CI here of 1.5 – 7.0 inches gives an idea of what the real
difference might be—it almost certainly lies somewhere within that range but could be as small
as 1.5 inches or as large as 7 inches. Like p-values, CIs depend on sample size. A large sample will
yield a comparatively narrower CI. Narrower CIs are considered to be better because they yield a
more precise estimate of what the “true” answer might be.
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Summary

Random error is present in all measurements, though some variables are more prone to it than
others. P-values and CIs are used to quantify random error. A p-value of 0.05 or less is usually
taken to be “statistically significant,” and the corresponding CI would exclude the null value. CIs
are useful for expressing the potential range of the “real” population-level value being estimated.
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6. Bias

Learning Objectives

After reading this chapter, you will be able to do the following:

1. Define bias, and differentiate it from random error
2. Differentiate between the different types of bias common to epidemiologic studies, and provide

illustrative examples of each

As we learned in the previous chapter, random error exists in all studies, because it exists to some
degree in all measurements. Standard statistical methods are used to quantify random error and
the role it may or may not have played in the interpretation of a study’s results. Random errors
cannot be eliminated entirely, and by correctly interpreting p-values and confidence intervals
(CIs), we can place our results in the appropriate context.

Bias, on the other hand, refers to systematic errors, meaning that they disproportionately affect
the data in one direction only—so, for example, we would always underestimate or always
overestimate when cutting the 6 tablespoons of butter for our cake (see chapter 5). There are
many potential sources of bias in epidemiologic studies; here we will cover some of the most
common. As with random error, all studies contain some degree of bias, and like with random
error, we do our best to minimize it. The difference is that statistical methods cannot help us with
bias.

Bias results in a calculated measure of association that is either above or below what it “should”
be, because our data were skewed in one direction or the other. It is impossible to know the
magnitude of the bias or even the direction. Did we over- or underestimate the risk ratio (RR)?
By how much? We will never know the answers to these questions, but by thinking through likely
directions of systematic errors (e.g., people will typically overestimate how much exercise they
get), we can often make educated guesses about the direction of a bias and perhaps also its
magnitude. But they are only guesses.

Bias can be minimized with correct study design and measurement techniques, but it can never
be omitted entirely. All studies have bias because humans are involved, and humans are inherently
biased.i Good scientists will ponder potential sources of bias during study planning phases,
working to minimize them. They will also make an honest appraisal of residual bias at the end of a
study and discuss this in the limitations section of a paper’s discussion section (see appendix 1).
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Internal versus External Validity

Bias can affect both the internal validity and the external validity of a study. The former is a much
more serious issue. Internal validity refers to the inner workings of a study: Was the best design
used? Were variables measured in a reasonable way? Did the authors conduct the correct set of
analyses? Note that although we can’t measure or quantify internal validity, an understanding of
epidemiology and biostatistics allows for a qualitative appraisal. We can believe the results of a
study that appears to be internally valid. A study that has major methodologic issues, however,
lacks internal validity, and we probably should not accept the results.

If a study lacks internal validity, stop. There is rarely a need to assess it further. On the other hand,
if a study does seem to have internal validity, we then assess external validity, or generalizability.
External validity refers to how well the results of this particular study could be applied to the
larger population. Recall from chapter 1 that the target population is the group about whom we
wish to say something, using data collected from our sample. Occasionally, we find a study that
is internally valid—meaning, it was conducted in an entirely correct way—but for some reason,
the sample is not sufficiently representative of the target population. For example, during my
dissertation work, I used cohort data to estimate the effects of maternal physical activity during
pregnancy on various birth outcomes.ii The data came from a large pregnancy cohort and included
data on hundreds of exposures and dozens of outcomes.iii The inclusion criteria were lenient—all
women pregnant with a singleton fetus planning to deliver at a certain hospital were eligible.
Much like we find in the general population, the pregnant people in this cohort were mostly
sedentary.ii,iv

In some more recent work, I was looking specifically at physical activity during pregnancy as the
only exposure; thus, my advertisement to recruit women into the study mentioned that I was
studying exercise in pregnancy (rather than pregnancy in general).1 In this more recent study,
I had very few sedentary people—indeed, I have a few who reported running half marathons
while pregnant! Since this is not normal, my study—though it does have reasonable internal
validity—cannot be generalized to all pregnant women but only to the subpopulation of them who
get a fair bit of physical activity. It lacks external validity. Because it has good internal validity, I
can generalize the results to highly active pregnant women—just not to all pregnant women.

1. All research with human participants must be approved by an ethics board, usually called an
institutional review board (IRB) in the US. The IRB must approve all study materials, including
advertisements, and all such advertisements must clearly state the research question.
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Representativeness of Samples

If you have a sample that is not representative of the underlying population, this affects external validity. The
extent to which this is a concern, though, depends on the research question. Questions that apply mainly to
biology (e.g., do statins lower serum cholesterol levels?) do not necessarily require representative samples,
because physiology does not usually vary to any great extent between people with different demographic
characteristics (differences by sex are the one exception): my body likely processes statin drugs in a nearly-
identical manner to that of most other women’s. However, when the research question involves behavior, then
we must be very concerned about representativeness, because behavior varies greatly by demographics and
social context. Thus, “Do statins lower serum cholesterol levels?” is a very different question than “If you
prescribe statins for people with high cholesterol, will they live longer?” since the latter requires behavior on
both the clinician’s part (providing the prescription) and the patient’s part (filling the prescription and then
taking the medication as directed).

Figure 6-1 illustrates the difference between internal validity and external validity. This uses the
cohort diagram, but the same principle applies to all study designs:

Figure 6-1
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Selection Bias

Selection bias can affect either the internal or the external validity of a study. The above example
about exercise in pregnancy (where I had a non-representative sample from the population) is the
kind of selection bias affecting external validity: my results are generalizable only to the subset
of the population from whom my sample actually was drawn rather than to the entire population.
This sort of selection bias is not ideal, but one can easily recover by simply narrowing the target
population to whom the results will apply. Asking “Who did the researchers get? Who did they
miss?” will help in assessing the extent of overall selection bias.

In other cases, selection bias can affect internal validity. This is much worse, since the results of
that study cannot be applied to anyone, because it has fundamental flaws. Selection bias adversely
affecting internal validity occurs when the exposed and unexposed groups (for a cohort study)
or the diseased and nondiseased groups (for a case-control study) are not drawn from the same
population. For example, in a study of maternal physical activity and labor outcomes,vi the “active”
group was recruited from a prenatal exercise class, but the “sedentary” group was recruited
from prenatal care clinics. To the extent that people who voluntarily choose to pay for and
attend an exercise class specifically for pregnant women are different than the overall group of
women getting prenatal care, this study has a selection bias affecting internal validity, because the
exposed and unexposed groups (samples) come from different populations. Again, asking, “Who
did they get? Who did they miss?” and also “Was this different between the two groups?” will help
here.

Selection bias affecting internal validity can creep up in other, less obvious ways, mostly relating
to missing data. Was the participation rate different between the 2 groups? Was there more loss
to follow-up in one group versus the other? Either of these could lead to groups that might not
reflect the same underlying population, since the kinds of people who agree to participate in
studies are different than those who don’t, and the kinds of people who drop out are different
than those who don’t. For instance, in studies of older adults, the sickest patients tend to drop out
because they become too sick to attend the study-related clinic visits. If this occurs more in one
study group than the other, it leads to selection bias.

Healthy worker bias is a type of selection bias, and it refers to the fact that people who can work
are generally healthier than the overall population because the overall population includes people
who are too sick to work. Thus studies that recruit from a population of people who work may lack
external generalizability—which is fine, as long as one is careful when applying the study’s results.
However, healthy worker bias can also affect internal validity if one group is recruited specifically
from a population of workers and the other from the general population. For instance, if we
suspect that Factory A has an environmental toxin (and our cohort study’s exposed group consists
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of workers from Factory A), then our unexposed group needs to be workers from somewhere
else—not, say, spouses or neighbors (who may or may not work) of the exposed participants.

Misclassification Bias

Misclassification refers simply to measuring things incorrectly, such that study participants get
put into the wrong box in the 2 x 2 table: we call them “diseased” when really they’re not (or vice
versa); we call them “exposed” when really they’re not (or vice versa).

Continuing with our exercise in pregnancy example, say we recruit 1,000 pregnant women and
assess their levels of physical activity. We decide that anyone meeting the recommendation for
physical activity during pregnancy (30 minutes of moderate activity, most days of the weekvii2) will
be classified as “exposed,” and anyone reporting less activity will be “unexposed.” In general, all
people will over-report their levels of physical activity.ix(p46) Thus in our study of 1,000 women,
we would expect some level of misclassification—if everyone slightly overreports their amount of
physical activity, then those people who actually got just under the recommended amount will be
incorrectly classified because their over-reporting will bump them up into the exposed (met the
guidelines) group.

If this is what the data should look like (imagine any disease you like here):

D+ D-

E+ 200 100

E- 300 400

But instead, if we incorrectly classify some women as exposed because of overreporting, the table
might look like this:

D+ D-

E+ 230 140

E- 270 360

This is called nondifferential misclassification, because it occurs at the same rate (here, 10% of

2. The astute among you will notice that these recommendations look remarkably like the
recommendationsviii for non-pregnant persons. Indeed, barring certain well-defined and relatively
rare complications, pregnant women should be just as active as non-pregnant people.
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unexposed were incorrectly classified as exposed) in both the diseased and nondiseased groups.
Nondifferential misclassification is not quite the same as random error—in random error, we
might have 10% misclassification, but it would go in both directions. Here we really only expect
overreporting of physical activity, so it is a systematic error, or bias. Misclassification, like all other
forms of bias, affects studies by giving us the wrong estimate of association.

Misclassification example

Using the first 2 x 2 table above (ie, the “correct” data—note that this is almost never observable), the odds ratio
(OR) is:

OR = = 2.67

Whereas the odds ratio for the biased data (the ones we actually collected in our study) is:

OR = = 2.19

The result of the calculation with data including nondifferential misclassification is closer to the
null than the correct one would be. In real life, we cannot ever observe the “correct” table, and
thus we cannot know by how much or in which direction our estimate is biased—just that it is.

Nondifferential Misclassification: Bias towards the Null?

In the exercise in pregnancy example, the OR estimate based on the biased data was biased toward the null (i.e.,
it’s closer to 1.0, the null value for odds ratios), but it could just as easily have been biased away from the null.
Some older epidemiology textbooks will say that nondifferential misclassification always biases toward the null,
but it turns out that this is not true.9p143 It’s best to assume that you don’t know which way the bias is going.

On the plus side, even if the data are misclassified, as long as it’s nondifferential misclassification, we have
probably still ranked people correctly. If everyone overestimates their physical activity, we can still tell the
couch potatoes from the marathon runners. Thus, although the estimate of association we calculated with our
misclassified data (in which everyone added, say, 30–60 minutes to their weekly exercise totals) is almost
certainly not “correct,” with nondifferential misclassification, we can often still say something about the results
(perhaps that the more exercise one gets, the lower one’s risk of heart disease?). This statement will almost
certainly remain true, even if we were able to correct for the overestimate of everyone’s physical activity and
generate an unbiased estimate of association.
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The flip side is differential misclassification. With differential misclassification, we again find
that some people are put into the wrong boxes in the 2 × 2 table, but this time it is not equally
distributed across all study groups. Perhaps diseased people misreport more than nondiseased
people. Or perhaps investigators are subconsciously more likely to classify someone as “diseased”
if they are known to be exposed. Differential misclassification is considered a fatal threat to a
study’s internal validity. Study authors, knowing this, will often acknowledge measurement errors
in their study but claim that they are nondifferential and therefore essentially irrelevant. When
you encounter such claims, think it through for yourself, and be sure you agree with the authors
before citing their work. Differential misclassification is more common than many of us would like
to admit.

Misclassification goes by numerous other names, including social desirability bias, interviewer
bias, clinician bias, recall bias, and so on. Regardless of name, however, misclassification boils
down to people being called exposed when they’re not, not exposed when they are, not diseased
when really they are, or diseased when really they’re not. When considering self-reported data,
as discussed in the previous chapter, you must first ask yourself, “Can people tell me this?” If not,
stop. But if yes, then you must consider, “Will people tell me this?” If not, then the data may have
bias from misclassification.

Sensitivity Analyses

Sometimes called bias analysis, a sensitivity analysis is a set of extra analyses conducted after the main results
of a study are known, with the goal of quantifying how much bias there might have been and in which direction
it shifted the results. Not all research questions and datasets are amenable to sensitivity analysis, but for those
that are, it’s a great way for authors to increase the perceived validity of their results. There is no set way of
conducting a sensitivity analysis; rather, one examines all assumptions made as part of an analysis and tests the
extent to which those assumptions, rather than an underlying true association, drove the results.

For example, if we were studying physical activity, and in our main analysis decided that anyone meeting the
guidelines was “active” and all other people in the study were “sedentary,” then one sensitivity analysis might
change this cutoff point (perhaps now we declare that anyone accumulating 2 or more hours per week of
exercise is “active,” even though this is less than the guidelines suggest) and see what the new estimate of
association is. If the new estimate is close to the original one, then we can conclude that our choice of cutoff
point (an assumption we made during analysis) did not affect the results extensively. This alone does not
preclude the possibility that the original results are incorrect, but it does lessen the possibility that we would
find a vastly different answer if we repeated the study using slightly different methods.

Missing data on individual variables also leads to misclassification—for instance, in the US, people
do not like to talk about money, so often questions on income go unanswered. If the kind of person
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who leaves the income question blank is different than the kind of person who answers it, then
the data are not missing at random. If data truly are missing at random (which might happen if,
for instance, some people genuinely don’t see the question because of a quirk in the page layout),
then the result is a slightly smaller sample size (and correspondingly less power), but otherwise
this has no adverse effects. However, in real life, data are almost never missing at random, which
means they are missing according to some pattern—and thus are creating a bias. If study authors
claim that they have data missing at random, think carefully about the scenario and make sure you
agree. More often, study authors simply don’t mention missing data at all.3 If an important variable
in the analysis is missing for more than 5% of the sample, yet this is not discussed by the authors,
then be wary of the results. They are probably biased.

Publication Bias

Publication bias arises because papers with more exciting results are more likely to get published.
A paper whose main finding is “there is no association between x and y” is difficult to get
published—so much so that there is an entire, legitimate, peer-reviewed journal dedicated solely
to publishing these so-called negative results.

This type of bias does not apply to individual studies, but rather to areas of the literature as a
whole. If papers with larger estimates of association and/or smaller p-values are more likely to
get published, then when you attempt to look at the entire body of literature on a given topic (e.g.,
should elderly people take prophylactic aspirin to prevent heart attacks?), the picture you get is
biased, because only the exciting papers were published. All the papers that showed no effect of
aspirin on heart attack were not published. This is worth keeping in mind whenever you are doing
literature searches and is discussed further in chapter 9.

Conclusion

All epidemiologic studies include bias. Investigators can minimize the biases that are present
through good design and measurement methods, but some will always remain. Those biases
affecting a study’s internal validity (selection bias that pertains more to one group than another,
or differential misclassification) render that study either entirely useless or useful only with
extreme caution. Selection bias affecting external validity only—the presence of nondifferential

3. Strange but true!
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misclassification or selection bias operating on the entire sample,—is manageable as long as one
understands the associated limitations. Missing data, and the extent to which non-participation
or non-compliance might have affected the results, should always be considered carefully.
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7. Confounding

Learning Objectives

After reading this chapter, you will be able to do the following:

1. Explain the concept of confounding, and how it affects the results of epidemiologic studies
2. Reiterate the criteria that a variable must meet to be a possible confounder
3. Conduct a stratified analysis to determine whether a variable is a confounder
4. Provide examples of exposure/outcome/confounder relationships, in terms of confounder criteria and

analysis requirements

Like random error and bias, confounding is another threat to study validity. Indeed, there are
some texts,i(p.37) as well as papers,ii that refer to confounding as “confounding bias.” I prefer the
term confounding, without the word bias, because while it also leads to a systematic error in the
data, confounding is a special case.

Imagine that you are doing a cross-sectional study in elementary school-aged kids of foot size and
reading ability:

Figure 7-1

In words, does foot size affect reading ability?

You go to an elementary school and measure both foot size (measured as length in inches) and
reading ability (measured in terms of words read per minute, averaged over a 5-minute testing
period), and you collect the following data:
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Table 7-1

Participant # Foot Size (inches) Reading Speed
(wpm)

1 7.2 40

2 7.7 85

3 7.2 63

4 7.6 52

5 7.4 51

6 7.1 41

7 7.0 82

8 7.2 60

9 7.6 53

10 7.5 55

11 8.3 123

12 8.2 97

13 8.5 108

14 8.1 111

15 8.2 109

16 8.2 99

17 8.7 95

18 8.0 110

19 8.5 121

20 8.2 108

21 9.4 128

22 8.1 117

23 9.8 115

24 8.8 109

25 9.1 112

26 9.3 112

27 9.8 106

28 9.2 125

29 9.6 163

30 9.0 137
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As discussed in chapter 4, in this book we will always dichotomize (i.e., split in two) continuous
variables to make the math simpler. If we dichotomize both foot size and reading speed—at 8.25”
and 100 wpm, respectively1 —we can draw the following 2 x 2 table:

Table 7-2

Reading
Speed

<100 100+

Foot
Size

<8.25″ 12 5

8.25″+ 1 12

Because this is a cross-sectional study, we would calculate the odds ratio:

OR = = 28.8

In words,

Children with feet that are at least 8.25″ long are 28.8 times as likely to be able to read at least 100 words per
minute, compared to children with shorter feet.

Wow! This is a huge finding! Should we give all grade-school kids growth hormones so that they
get bigger feet and increase their reading speeds?

Not so fast.

Given that the target population for this hypothetical study is grade-school children, it seems
likely that there is a confounder at work—namely, grade level. Kids in higher grades will have
bigger feet because they are older, and they will also by and large be faster readers:

1. The 8.25” and 100 wpm cutoffs would be a great thing to vary in a sensitivity analysis! See chapter 6.
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Figure 7-2

In this scenario, we need to control for the confounder (grade level): we need to remove its
influence to get an accurate estimate of the association between the exposure (foot size) and the
outcome (reading ability).

Before we delve into how to control for confounders, let’s discuss what confounders are from a
theoretical perspective.

Criteria for Confounders

There are 3 criteria that a variable must meet in order for it to be a potential confounder (I say
“potential” because not all variables that meet these criteria will actually turn out to confound the
data—you figure this out during the analysis):

1. The variable must be statistically associated with the exposure.
2. The variable must cause the outcome.
3. The variable must not be on a causal pathway.

Let’s discuss each of these in more detail.

Criterion #1: Associated with Exposure

Association is a statistical term that does not necessarily imply a causal relationship (this is
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discussed in more detail later, see chapter 10). Basically, association means that the confounding
variable is more common in the exposed group than the unexposed group (or vice versa), thus
producing a statistical association. The confounder does not need to cause or prevent the
exposure, it just needs to be disproportionately distributed between the exposed and unexposed
groups. In our previous example, grade level is disproportionately distributed among various foot
sizes—kids in higher grades are more likely to have bigger feet compared to kids in lower grades.
Note that there can be a causal relationship, with the confounder causing the exposure (but not
the other way around—see criterion 3), but this is not necessary. In our example, grade level is not
causing foot size (age is causing foot size)—but they are associated.

Criterion #2: Causes the Outcome

In this case, there must be a causal link between the confounder and the outcome. It does not have
to be a proven causal link, just an “it is reasonably possible that this exposure causes (or prevents)
that outcome” link. In our foot size/reading ability example, grade level (the confounder) certainly
causes faster reading speed (the outcome).

Importantly, the confounder must cause the outcome—not the other way around. If the outcome
is causing the confounder, then it’s not a confounder. There are many times in epidemiology when
we aren’t sure which way a causal arrow would go—does the disease cause the confounder, or
does the confounder cause the disease? An example might be excessive weight loss and illness.
Losing a large amount of weight quickly can make one ill—but being ill can also cause a large
amount of weight loss. In scenarios like this, where we aren’t sure which way the arrow points,
what epidemiologists do in practice is first assume the arrow goes one way and do the analysis
accordingly (here, that would mean either including or not the potential confounder). They then
assume the arrow goes the other way and do the analysis again. If the results of both analyses
are similar, then the arrow direction isn’t important. But if the 2 analyses produce very different
results, then we would report both and let the reader decide which is more applicable for them.

Criterion #3: Not on the Causal Pathway

The final criterion for a variable to be a potential confounder is that it is not be on the causal
pathway from exposure to outcome. In other words, we do not want this scenario:
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Figure 7-3

An example of a variable on a causal pathway might be as follows:

Figure 7-4

In this case, “alertness in class” is not a confounder, because it’s caused by the amount of sleep
and is thus on the causal pathway. Variables on the causal pathway are mediators, not potential
confounders.

Confounding: Definition

A confounder is thus a third variable—not the exposure, and not the outcome2—that biases the
measure of association we calculate for the particular exposure/outcome pair.

Importantly, from a research perspective, we never want to report a measure of association that
is confounded. Imagine if we do our cross-sectional study on foot size and reading ability, without
accounting for grade level. We would report the odds ratio of 28.8 as calculated above…Oops!
We’ve reported an association that’s not really true—it’s just confounded by grade level.

2. Just a reminder! When epidemiologists say outcome we mean “health outcome or disease under
study”—we do not mean the results of a study. Those are results. See Appendix 1.
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Methods of Confounder Control

One can control for confounding through either study design or analytic techniques. In terms of
study design, you can

1. Restrict the sample
2. Match on the confounder
3. Randomize (as in, choose a randomized controlled trial as the study design)

Restricting the sample means that you limit your study only to one level of the confounder
(e.g., third graders only). Therefore the potentially confounding variable no longer meets the
first criterion for confounders—it cannot be disproportionately distributed between exposed
and unexposed because there is only one level of the confounder available. Thus all exposed
participants are in third grade, as are all unexposed. Our causal diagram now looks like this:

Figure 7-5

By restricting to just one grade level, we remove the confounding by grade level: kids in both
higher and lower grades are no longer relevant because if we have only third graders, then there
aren’t any kids in higher or lower grades. Among third-graders only, we would expect that foot size
and reading ability are uncorrelated.

Inherent variability
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Obviously not all third graders will have the same size feet, nor will all third graders uniformly have the same
reading ability. However, on a group level, third graders in general have bigger feet and are better readers than
first graders, and likewise have smaller feet and are poorer readers than fifth graders. Epidemiology as a
science works because of both this individual variation and the fact that groups of people (selected on some
characteristic, like grade level) are more similar to each other than they are to people in other groups.

Here are the same data with a column added for grade level:
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Table 7-3

Participant # Foot Size
(inches)

Reading Speed
(wpm) Grade

1 7.2 40 1

2 7.7 85 1

3 7.2 63 1

4 7.6 52 1

5 7.4 51 1

6 7.1 41 1

7 7.0 82 1

8 7.2 60 1

9 7.6 53 1

10 7.5 55 1

11 8.3 123 3

12 8.2 97 3

13 8.5 108 3

14 8.1 111 3

15 8.2 109 3

16 8.2 99 3

17 8.7 95 3

18 8.0 110 3

19 8.5 121 3

20 8.2 108 3

21 9.4 128 5

22 8.1 117 5

23 9.8 115 5

24 8.8 109 5

25 9.1 112 5

26 9.3 112 5

27 9.8 106 5

28 9.2 125 5

29 9.6 163 5

30 9.0 137 5
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Limiting ourselves to just third grade, then, the 2 x 2 table looks like this:

Table 7-4

Reading
Speed

<100 100+

Foot
Size

<8.25″ 2 2

8.25″+ 3 3

The odds ratio (OR) is 1.0. This is the correct measure of association to report. In reality, foot size
has nothing to do with reading speed (OR 1.0). The 28.8 that we calculated earlier was wrong. It
was confounded by grade level—there is no association once we control for this confounding by
restricting to one grade level.

Though restriction works beautifully in terms of controlling confounding, often it is not a realistic
approach because it limits our study too much. For instance, a reasonable study question might
be, “What are predictors of breast cancer death among postmenopausal women?” Restricting by
age (e.g., “What are predictors of breast cancer death among 62-year-old women?”) would make
the study much less useful because we wouldn’t necessarily be able to generalize the results to
women of other ages. Epidemiologists thus usually use other approaches for confounder control.

Matching is often used in case-control studies, and it has much the same effect as restriction in
controlling confounding. For example, say we are looking at a particular birth defect (outcome)
and maternal smoking (exposure), and we suspect that maternal age is a possible confounder.
We would want to recruit a control with the same maternal age for each case: if the study
were to enroll a 30-year-old case, we would want to match her with a 30-year-old control.
The confounder (age) still causes the outcome (birth defects), but by forcing the confounder
distribution to be the same between cases and controls, we have negated criterion #2, and thus
negated the possible effect of the confounder on the exposure/outcome measure of association.

Randomizing works by forcing the confounder(s) to fail criterion # 1—in this case, by randomly
assigning participants to the exposure, we have ensured an equal distribution of the confounder
between the exposed and unexposed groups. The link between the confounder and the exposure
is now missing, as it is with restriction. See chapter 9 for more on this.

In terms of controlling for confounding in the analysis phase, there are 2 main options:

1. Stratifying
2. Regression (which is really just a special case of stratifying)

To stratify, you take the data and make a different 2 x 2 table for each level of the potential
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confounder. Let’s now assume that we are concerned with data from a case-control study on oral
contraceptive pill (OCP) use (ever used vs. never used) and ovarian cancer:

Figure 7-6

We conduct this study and obtain the following data:
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Table 7-5

Participant #
Ever OCP?

0 = no, 1 = yes

Ovarian Cancer?

0 = no (control), 1 =
yes (case)

1 1 1

2 1 1

3 1 1

4 1 1

5 0 1

6 0 1

7 0 1

8 0 1

9 0 1

10 0 1

11 1 0

12 1 0

13 1 0

14 1 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20 0 0

The 2 x 2 table would be as follows:

Table 7-6

Ovarian
Cancer

+ –

OCP

Ever 4 4

Never 6 6
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The OR is 1.0—use of oral contraceptives is not associated with ovarian cancer. During
confounding analyses, this value is referred to as the crude or unadjusted measure of
association—meaning that we have not yet accounted, adjusted, or controlled for any confounders.
Unadjusted measures only take into account the exposure and the outcome.

However, what about smoking as a confounder? Let’s check the confounder criteria:

1. The variable must be associated with the exposure.

1. Yes! Both oral contraceptives and smoking increase one’s risk of deep venous
thrombosis, a potentially life-threatening condition. Smoking is thus considered a
contraindication to oral contraceptive use,iii which leads clinicians to prescribe other
forms of birth control instead for women who smoke. This leads to a disproportionate
distribution of smokers (the confounder) between women who do and do not use oral
contraceptives (the exposure).

2. The variable must cause the outcome.

1. Possibly. While we often think of smoking as causing lung cancer (which it certainly
does), smoking has also been associated with other cancers often enough that it is
reasonable to suspect that it might cause ovarian cancer too.iv

3. The variable must not be on a causal pathway.

1. Yes! It seems highly unlikely that taking birth control pills would in turn cause a woman
to take up smoking.

Smoking thus meets our criteria and is a potential confounder in this scenario.3 Here are the data
with smoking status added:

3. Remember, variables that meet the confounder criteria are potential confounders. They may or may
not actually produce a biased estimate of association; we figure this out during the analysis.
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Table 7-7

Participant #
Ever OCP?

0 = no, 1 = yes

Ovarian Cancer?

0 = no (control), 1
= yes (case)

Smoker?

0 = no, 1 =
yes

1 1 1 1

2 1 1 1

3 1 1 0

4 1 1 0

5 0 1 1

6 0 1 1

7 0 1 1

8 0 1 0

9 0 1 0

10 0 1 0

11 1 1 1

12 1 0 1

13 1 0 0

14 1 0 0

15 1 0 1

16 0 0 1

17 0 0 1

18 1 0 0

19 0 0 0

20 0 0 0

We now stratify by smoking status. In other words, we make 2 different 2 × 2 tables: one for
smokers, and the other for nonsmokers. Keep in mind that all the women who appeared in the
above 2 × 2 table for ovarian cancer and OCP use are still present—they’re just in one of the two
tables below, depending on whether they smoke or not.
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Table 7-8

Smokers

Ovarian
Cancer

+ –

OCP
Ever 2 3

Never 3 2

Table 7-9

Nonsmokers

Ovarian
Cancer

+ –

OCP
Ever 2 3

Never 3 2

Note that the 2 x 2 tables are still for OCP (exposure) and ovarian cancer (outcome)—we have just
made one such table for smokers and another for nonsmokers.

The next step in a stratified analysis is to calculate the ORs from these 2 x 2 tables, so we have an
OR for smokers, and an OR for nonsmokers.

Confounding Example 1: OCP/Ovarian Cancer by Smoking Status

The odds ratio for smokers is:

ORsmokers= = 0.44

Interpretation:
Women who have ovarian cancer are 0.44 times as likely to report a history of OCP use, compared to women

without ovarian cancer—among smokers only.
And the odds ratio for non-smokers is:

ORnon-smokers= = 0.44

Interpretation:
Among nonsmokers, women who have ovarian cancer are 0.44 times as likely to report a history of oral
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contraceptive (OCP) use, compared to women without ovarian cancer.
Note the additions (in red) to those interpretations! When conducting stratified analysis, it is important to say
which group your measure of association applies to. This can come either at the beginning (as it does above for
nonsmokers) or at the end (as it does above for smokers).

Since our stratum-specific odds ratios (0.44 for smokers and 0.44 for nonsmokers) are similar to
each other but different from the crude OR (which was 1.0), we say that smoking is indeed acting
as a confounder in these data. The crude OR was wrong; it was confounded by smoking.

“Similar” and “Different”—by How Much?

When the stratum-specific measures of association are similar to each other but different than the crude OR,
we have confounding. But by how much? There is a standard criterion for “different”—if the crude and adjusted
ORs are more than 10% different, most epidemiologists would consider that to be evidence of confounding. For
“similar,” though, there isn’t really a consensus. Perhaps within 2–3% of each other? Importantly, the crude
value does not fall between them.

The “real” OR is 0.44: oral contraceptive use is rather strongly associated with less ovarian cancer.
But without accounting for smoking, it looks like this is not true (the crude OR was 1.0, and did
not control for smoking). Because there is confounding, we thus would want to report an OR
that controls for smoking (the confounder). The most common way to do this is to calculate an
“adjusted” measure. There are many ways to calculate an adjusted measure of association4; one is
to calculate the Mantel-Haenzel odds ratio:

Figure 7-7
Source: https://www.statsdirect.com/help/meta_analysis/mh.htm

You can see from the formula that the Mantel-Haenzel OR is just a weighted average of the

4. Any biostatistics text would discuss several such methods.
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stratum-specific odds ratios, with each stratum being an i. We call this the adjusted OR, and it has
controlled for confounding by the variable on which we stratified.

Categorizing Continuous Variables

I mentioned in chapter 4 that if one has a continuous variable (e.g., age or height), most analyses are best
served by keeping that variable continuous but that for the purposes of this book, we would dichotomize all
variables to make the math easier. If a potential confounder is a continuous variable, we must categorize it (into
2 or 3 categories, usually) in order to conduct a stratified analysis by hand. Thus if height were our potential
confounder, we might create 3 categories: less than 5′2″, 5′2″–6′0″, and taller than 6′0″. You can see, however,
that within these categories, there is still considerable variability—5′2″ is a full 10″ shorter than 6′. Thus creating
categories (i.e., strata for the stratified analysis) out of a continuous variable in order to control confounding
might not work perfectly if the strata remain too heterogeneous. This produces residual confounding—we have
removed some of the confounding by height but there is still some confounding left. This is one reason
epidemiologists mostly jump straight to regression, in which it is easier to keep continuous variables
continuous. However, the goal of this book is to create knowledgeable readers of epidemiologic studies, not
knowledgeable doers, which would substantially more training. I thus rely on categorizing continuous variables
so that the math is easy to follow and statistical software is unnecessary. If you follow the math as presented
here, it is easy enough to make the cognitive leap to reading papers that use regression (regression is just
stratified analysis with many more categories).

Most studies reported in the literature use the other method for controlling for confounding in
analyses: regression, which is just a special case of a stratified analysis—specifically, it accounts for
all possible strata. For instance, if we had continuous data on total months of smoking over the
course of a lifetime, a regression model would “make” a 2 × 2 table for nonsmokers, then one for
people had smoked for 1 month, then a 2 × 2 table for those who had smoked for 2 months, and
so on, until each possible stratum had its own 2 × 2 table. The model then calculates a weighted
average of the total of these (much like a mega–Mantel Haenzel), and the result is also known as
the adjusted odds ratio. For cohort studies or randomized controlled trials we of course instead
calculate the adjusted risk ratio or adjusted rate ratio (RR).

Interpretation

To interpret our OCP/ovarian cancer findings in words (the adjusted odds ratio, whether
calculated via Mantel-Haenzel or by regression, is 0.44), we would say:
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Women who have ovarian cancer are 0.44 times as likely to report a history of OCP use compared to women
without ovarian cancer, controlling for smoking.

Or we could say:

Women who have ovarian cancer are 0.44 times as likely to report a history of OCP use compared to women
without ovarian cancer, adjusting for smoking.

Or we could say:

Women who have ovarian cancer are 0.44 times as likely to report a history of oral contraceptive use
compared to women without ovarian cancer, holding smoking constant.

Notice how there are multiple ways of letting the reader know that smoking was treated as a
confounder (phrases in red). It doesn’t matter which you choose—the important thing is that you
make it clear that we are presenting the measure of association having already dealt with the
confounding.

Choosing Confounders

When conducting an analysis in real life, there are often multiple potential confounders. The first
step in any analysis is to make a list of all such potential confounders. The easiest way to do this is
first to make a list of all variables that might cause your outcome. Then take that list and make sure
the variables are associated with the exposure. Finally, for any confounders that meet our first 2
criteria, make sure they are not on the causal pathway (e.g., that the exposure is not causing the
confounder). As mentioned above, there are many instances where it is difficult to know which is
causing which; in such cases, we do the analysis both ways.

The next step would be to determine which of the potential confounders meeting the 3 criteria to
control for in an analysis (regression allows you to control for many confounders at once). One way
would be to drop all confounders that do not meet the “10% change” criterion mentioned above.
There are additional nuances, however, that are beyond the scope of this book, and prominent
epidemiologists differ in their opinions on how to choose a list of confounders to control for.v,vi,vii
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Luckily, beginning epidemiology students will not need to conduct their own complex analyses;
however, being able to think through a particular exposure/disease relationship and make a list of
all potential confounders is a useful skill when reading the literature. Did the authors consider all
the variables you thought of that meet the confounder criteria? If not, did they explicitly specify
why not? If an obvious potential confounder is missing from the analysis in a particular article,
then maybe that is not the most valid article.

Summary

Confounders are variables—not the exposure and not the outcome—that affect the data in
undesirable and unpredictable ways. Specifically, in data that are confounded, one will calculate
the wrong measure of association (and it is impossible to know in which direction one is wrong).
This leads to inaccurate conclusions unless one controls for that confounder. To be a potential
confounder, the variable must be statistically associated with the exposure, must cause the
outcome, and must not be on the causal pathway. Potential confounders can be controlled for
via study design (restriction, matching, or randomization) or during data analysis (stratification
or regression, leading to an adjusted measure of association). In the latter case, if the crude and
adjusted estimates of association are more than 10% different, the variable should be considered a
confounder, and one would report the adjusted estimate because it controls for the confounder.
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8. Effect Modification

Learning Objectives

After reading this chapter, you will be able to do the following:

1. Explain what effect modification is
2. Differentiate between confounders and effect modifiers
3. Conduct a stratified analysis to determine whether effect modification is present in the data

In the prior chapter, we discussed confounding. A confounder, you will recall, is a third variable
that if not controlled appropriately, leads to a biased estimate of association. Effect
modification also involves a third variable (not the exposure and not the outcome)—but in this
case, we absolutely do not want to control for it. Rather, presence of effect modification is itself
an interesting finding, and we highlight it.

When effect modification (also called interaction) is present, there will be different results for
different levels of the third variable (also called a covariable). For example, if we do a cohort study
on amount of sleep and GPA among Oregon State University (OSU) students over the course of
one term, we might collect these data:

Table 8-1

GPA

<
3.0

≥
3.0

Amount
of Sleep

< 8
hours 25 25

> 8
hours 25 25

Since this was a cohort study, we calculate the risk ratio (RR):
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RR = = 1.0

There is no association between amount of sleep and subsequent GPA. Using the template
sentence, this can be stated:

Students who averaged fewer than 8 hours of sleep per night were 1.0 times as likely to end the term with a
GPA below 3.0, compared to students who got at least 8 hours per night.

This is a risk ratio from a cohort study, so we need to include the time frame—which I did by saying
“to end the term”. Just as for confounding, we refer to this as the unadjusted or crude RR.

However, from talking to students, we wonder whether or not gender might be an important
covariable. As with confounding, we would conduct a stratified analysis to check for effect
modification. Again, we draw 2 × 2 tables with the same exposure (sleep) and outcome (GPA) but
draw separate tables for men and women (gender is the covariable). We do this by looking back at
the raw data and figuring out how many of the 25 people in the A (E+, D+) cell above were men and
how many were women. Let’s assume that of the 25 people who reported <8 hours and had a GPA
< 3.0, 11 were men and 14 were women. We then similarly divide participants from the B, C, and D
cells, and make stratum-specific 2 x 2 tables:

Table 8-2

Men GPA

<
3.0

≥
3.0

Amount
of Sleep

< 8
hours 11 14

8+
hours 17 9
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Table 8-3

Women GPA

<
3.0

≥
3.0

Amount
of Sleep

< 8
hours 14 11

8+
hours 8 16

Effect Modification Example: Sleep and GPA, with gender as EM

Using data from the above 2×2 tables, the stratum-specific RRs are as follows:

RRmen= = 0.68

RRwomen= = 1.7

Interpretations:

Among male students, those who slept fewer than 8 hours per night had 0.68 times the risk of having a GPA
<3.0 at the end of the term, compared to those who reported 8 or more hours.

Among female students, those who slept fewer than 8 hours per night had 1.7 times the risk of having a GPA
<3.0 at the end of the term, compared to those who reported 8 or more hours.

Sleeping fewer than 8 hours is associated—in these hypothetical data—with a higher GPA among
male students (the “outcome” is low GPA, so an RR less than 1 indicates that exposed individuals
are less likely to have a low GPA) but with a lower GPA among female students.

Gender in this case is acting as an effect modifier: the association between sleep and GPA varies
according to strata of the covariable. You can spot effect modification when doing stratified
analysis given the following:

• The stratum-specific measures of association are different than each other
• The crude falls in between them

If you have effect modification, the next step is to report the stratum-specific measures. We do
not calculate an adjusted measure (it would be near 1.0, similar to the crude); the interesting thing
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here is that men and women react to sleep differently. Effect modification is something we want
to highlight in our results, not something to be adjusted away.

How Different is Different?

Unlike for confounding, where a 10% change from crude to adjusted is an accepted definition for confounding,
there exists no such standardized definition for how different the stratum-specific measures must be to call
something an effect modifier. The threshold should probably be higher than the one necessary to declare
something a confounder, because once you declare something an effect modifier, you are subsequently
obligated to report results separately for each level of the covariable—something that cuts your power in at
least half. Thus, in epidemiology, we rarely see evidence of effect modification reported in the literature. Long
story short, “different” enough for effect modification is “unequivocally different.”

When reading articles, effect modification will sometimes be called interaction, or the authors
might just say that they are reporting stratified analyses. Any of these 3 phrases is a clue that there
is a variable acting as an effect modifier.

Effect Modification Example II

Following the housing bubble-driven recession of 2008 (this is the exposure), the US economy
lost a lot of jobs. Here is a graph showing the number of people who were working (the outcome)
before, during, and after the recession. Results are being presented stratified by gender (a
covariable), meaning the analyst suspected that gender might be acting as an effect modifier.
Indeed, the results are slightly different: men (in blue) lost a greater proportion of jobs, and as of
2014 had not yet recovered to pre-recession levels, whereas women (in red) lost fewer jobs and by
2014 had fully recovered.
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Figure 8-1
Source: https://fred.stlouisfed.org/graph/fredgraph.png?g=qUs

What if we also stratify by age? First, here is a graph showing how the recession affected jobs for
people ages 55 and older:
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Figure 8-2
Source: https://fred.stlouisfed.org/graph/fredgraph.png?g=qUt

The recession did not affect older working Americans at all. Nor are we seeing effect modification
by gender—the 2 lines are nearly parallel.

What about young adults?
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Figure 8-3
Source: https://fred.stlouisfed.org/graph/fredgraph.png?g=qUv

Here we have major effect modification by gender—young men lost a huge proportion of available
jobs and had not recovered fully as of 2014. This is not surprising, as the recession was caused
largely by the housing bubble, and construction workers are mostly young men. By contrast, young
women lost a small proportion of jobs and quickly recovered to better-than-prerecession levels.

Finally, we look at jobs for 25 to 54-year-olds:
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Figure 8-4
Source: https://fred.stlouisfed.org/graph/?id=LNS12000061

Here we see a very bleak picture. In this age group, jobs were lost—more for men than
women—and as of 2014 had not recovered at all.

Thus when examining the job market’s response to the 2008 recession, we see substantial effect
modification by age (jobs recovery varied drastically by age) and, within some age categories, also
some evidence of effect modification by gender. The effects of the recession on jobs were different
for people of different ages and genders.

This is important because the policy implications would be very different. Imagine you were
working as part of the federal government and trying to design an economic stimulus or recovery
package. If the only data you had came from the first graph, without the age breakdowns, the
potential policy solutions would be very different than if you also had access to the stratified-by-
age analysis.
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Differences between Confounding and Effect Modification

With confounding, you’re initially getting the wrong answer because the confounder is not
distributed evenly between your groups. This distorts the measure of association that you
calculate (remember: having bigger feet is associated with reading speed only because of
confounding by grade level). So instead you need to recalculate the measure of association, this
time adjusting for the confounder.

With effect modification, you’re also initially getting the wrong answer, but this time it’s because
your sample contains at least 2 subgroups in which the exposure/disease association is different.
In this case, you need to permanently separate those subgroups and report results (which may or
may not be confounded by still other covariables) separately for each stratum: in this case, men
who sleep less have higher GPAs than men who sleep more, but at the same time, women who
sleep more have higher GPAs than women who sleep less.

Here is a summary table denoting the process for dealing with potential confounders and effect
modifiers. Much of the process is the same regardless of which type of covariable you have (in
all cases, you must measure the covariable during your study, and measure it well!). Areas of
difference are shown in red.
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Table 8-4

Confounding Effect Modification

Before Planning a Study

Think about what variables might
act as confounders based on
what you know about the
exposure/disease process under
study.

Think about what variables
might act as effect modifiers
based on what you know about
the exposure/disease process
under study.

During a Study
Collect data about any potential
covariables—stratified/adjusted
analyses cannot be conducted
without data on the covariable!

Collect data about any potential
covariables—stratified/adjusted
analyses cannot be conducted
without data on the covariable!

Analysis: Step 1
Calculate the crude measure of
association (ignoring the
covariable).

Calculate the crude measure of
association (ignoring the
covariable).

Analysis: Step 2
Calculate stratum-specific
measures of association, such
that each level of the covariable
has its own 2 x 2 table.

Calculate stratum-specific
measures of association, such
that each level of the covariable
has its own 2 x 2 table.

Analysis: Step 3

If the stratum-specific measures
are similar to each other, and at
least 10% different than the
crude (which does not fall
between them), then the
covariable is a confounder.

If the stratum-specific
measures are different than
each other, and the crude lies
between them, then the
covariable is an effect
modifier.

Writing Results
Report an adjusted measure of
association that controls for the
confounder.

Report the stratum-specific
measures of association.

Example III

Imagine that you do a cross-sectional study of physical activity and dementia in elderly people, and you
calculate an unadjusted odds ratio (OR) of 2.0. You think that marital status might be an important covariable,
so you stratify by “currently married” versus “not currently married” (which includes never married, divorced,
and widowed). The OR among currently married people is 3.1, and among not currently married people the OR
is 3.24. In this case, marital status is acting as a confounder, and we would report the adjusted OR (which would
be 3.18 or so).
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Example IV

Imagine that you do a randomized trial of a Mediterranean diet to prevent preterm birth in pregnant women.
You do the trial and calculate an RR of 0.90. You think that perhaps parity might be an important covariable, so
you conduct a stratified analysis. Among nulliparas, the RR is 0.60, and among multiparas, the RR is 1.15. These
are different than each other, and the crude lies between them. In this case, parity is acting as an effect
modifier, and so you would report the 2 stratum-specific RRs separately.

Example V

Imagine that you are doing a case-control study of melanoma and prior tanning bed use. The crude OR is 3.5,
but perhaps gender is an important covariable. The stratified analysis yields an OR of 3.45 among men, and 3.56
among women. In this case, the covariable (gender) is neither a confounder nor an effect modifier. We say that
it is not a confounder because (1) the crude lies between the 2 stratum-specific estimates, but also (2) the
stratum-specific estimates are not more than 10% different than the crude. We say that it is not an effect
modifier because, 3.45 and 3.56 are not that different—in both cases, there is a substantial effect (approximately
3.5 times as high). We would report the crude estimate of association, as it requires neither adjustment nor
stratification to account for the effects of gender.

Can the Same Variable Act as Both a Confounder and an Effect Modifier?

Yes! Usually we see this when the covariable in question is a continuous variable, dichotomized for the
purposes of checking for effect modification. For instance, if we think age might be an effect modifier, we might
divide our sample into “old” and “young” for the stratified analysis—say, older than 50 versus 50 or younger. To
the extent that 51-year-olds are not like 70-year-olds, we might miss some important nuances in the results,
possibly because there exists in the data further effect modification with more categories (which would drop
the power to almost nothing, were we to report separately on additional strata) or “residual” confounding as
discussed in the previous chapter. Further details are beyond the scope of this book, but know that the same
covariable can theoretically act as both a confounder and an effect modifier—but that one rarely sees this in
practice.
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Conclusion

Unlike confounding, whose effects we want to get rid of in our analysis, effect modification is an
interesting finding in and of itself, and we report it. To check for effect modification, conduct a
stratified analysis. If the stratum-specific measures of association are different than each other
and the crude lies between them, then it’s likely that the variable in question is acting as an effect
modifier. Report the results separately for each stratum of the covariable.

One final, put-it-all-together table:

Table 8-5

If these are your ORs/RRs:

Crude/Unadjusted
Stratum

1

Stratum

2
Then the covariable is… And you would report…

2.0 1.0 3.2 an effect modifier the 2 stratum-specific
measures of association

2.0 3.5 3.6 a confounder an adjusted measure

2.0 1.9 2.0 nothing interesting the crude measure
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9. Study Designs Revisited

Learning Objectives

After reading this chapter, you will be able to do the following:

1. Compare and contrast the strengths and limitations of cohort, case-control, cross-sectional, and
randomized controlled trial studies

2. Describe ecologic studies and explain the ecologic fallacy
3. Describe the appropriate use of a systematic review and meta-analysis

Now that we have a firm understanding of potential threats to study validity, in this chapter
we will revisit the 4 main epidemiologic study designs, focusing on strengths, weaknesses, and
important details. I will also describe a few other study designs you may see, then end with a
section on systematic reviews and meta-analyses, which are formal methods for synthesizing a
body of literature on a given exposure/disease topic.

Cohorts

Recall from chapter 4 that a cohort study consists of drawing an at-risk (nondiseased) sample from
the population, assessing levels of exposure, and then following the cohort over time and watching
for incident disease:

Figure 9-1
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Cohort studies are a very strong study design, meaning that they are less prone to bias and
temporality-related logical errors than some other designs. First, because we begin with a non-
diseased sample, for which we immediately assess exposure status, we know that the exposure
came first. Because of this, cohorts are unlikely to have misclassification of exposure differentially
by disease status because the exposure is measured before disease status is known
(misclassification of disease status differentially by exposure, however, is still a risk).

Cohort Temporality and Latent Periods

For diseases that have a long latent period—meaning that the biological onset of disease occurs long before the
disease is detected and diagnosed—it is possible that some of our “nondiseased” sample are actually diseased
but just have not been diagnosed yet. This could happen, for instance, for a cancer patient while their tumor is
still too small to detect. When conducting studies on conditions with known or suspected long latent periods,
epidemiologists will often exclude from the sample any participants in whom the disease is diagnosed during
the first several months of follow-up, theorizing that those individuals were not truly disease-free at baseline.

Second, because cohort studies look for incident disease, they do not conflate the person’s having
the disease with how long they have had it, as prevalence studies do (see chapter 2 for a discussion
of the mathematical relationship among incidence, prevalence, and duration of disease).

Third, they are the only study design that can be used to assess rare exposures. If the exposure is
uncommon within the target population (say, 10% or fewer people can be expected to be exposed),
then cohort studies can deliberately sample exposed individuals to ensure sufficient statistical
power (the smallest cell in the 2 × 2 table drives the power) without needing an unreasonably large
sample. For example, if we are concerned about chemical exposures in a particular factory, we
might enroll exposed workers from that factory as well as a unexposed group of workers from a
different factory (checking first, of course, to make sure that the second factory is truly exposure-
free) and follow both groups, looking for incident disease.

Which leads nicely to the fourth strength: multiple outcomes can be assessed in the same cohort.
In our factory example above, the exposed workers from Factory 1 and the unexposed workers
from Factory 2 can be followed for any reasonably common disease. (Just how common is a
judgment call—we could also watch for and track uncommon diseases, as long as we acknowledge
that those analyses would be underpowered.) We could look for new-onset heart disease,
leukemia, fibromyalgia, diabetes, death, or anything else of interest. If looking at more than one
outcome, then we also must measure all outcomes of interest in the sample at baseline. Then, for
analyses of each specific outcome, we merely eliminate from the cohort the people who were not
at risk of that outcome. For instance, if Person A joins our factory study, and at the beginning of
the study they already have hypertension but do not have melanoma, then we would not include
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that person in analyses where hypertension is the disease outcome. Their data could, however,
be included in analyses where melanoma is the disease outcome, because they were at risk of
melanoma at baseline.

Cohort studies can also be used to study multiple exposures, as long as these exposures are all
common enough that we would not need to deliberately sample on exposure status. To do this, we
would just grab a sample from the target population, and assess a multitude of exposures. If we
want to also assess more than one outcome, then we need to measure all disease states of interest
at baseline so that eventual analyses can be restricted to the population at risk, as discussed above.
This ability to look at multiple outcomes—and potentially also multiple exposures—adds efficiency
to cohort studies, as we can essentially conduct numerous studies all at once.

The Framingham Heart Study is a classic example of a cohort study that assessed multiple
exposures and multiple outcomes. This study, a collaboration between the US National Heart,
Lung, and Blood Institute (a division of the National Institutes of Health) and Boston University,
began in 1948 by enrolling just over 5,000 adults living in Framingham, Massachusetts.
Investigators measured numerous exposures and outcomes, then repeated the measurements
every few years. As the cohort aged, their spouses, children, children’s spouses, and grandchildren
have been enrolled. The Framingham study is responsible for much of our knowledge about heart
disease, stroke, and related disorders, as well as of the intergenerational effects of some lifestyle
habits. More information and a list of additional publications (more than 3,500 studies have been
published using Framingham data) can be found here.

Cohort studies also have downsides. They cannot be used to study rare diseases because the
cohort would need to be too large to be practical. For example, phenylketonuria is a genetic
metabolic disorder affecting about 1 in 10,000 infants born in the US.1 To get even 100 affected
individuals, then, we would need to enroll one million pregnant women in our study—a number
that is neither practical nor feasible.

Furthermore, prospective cohort studies are costly. Following people over time takes a fair bit of
effort, which means that study personnel costs are high. Because of this, cohort studies cannot be
used to study diseases with decades-long induction or latent periods.

For example, it would be difficult to conduct a cohort study looking at whether adolescent dairy
product consumption is associated with osteoporosis in 80-year-old women, because following
current teenagers for 60 years or more would be extremely difficult. Along similar lines, selection
biases related to lack of follow-up can be severe in studies with long durations: the longer we try
to follow people, the more likely it is that they move, change phone numbers/email addresses, or
get tired of filling out a survey every year and just stop participating. More troubling would be if
people who start to feel ill are the ones who quit answering inquiries from the study team. What
if these people were feeling ill because they were about to be diagnosed with the outcome under
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study? Despite this difficulty, a few long cohort studies such as Framingham exist and have yielded
rich datasets and much knowledge about human health.

Randomized Controlled Trials

Recall from chapter 4 that an RCT is conceptually just like a cohort, with one difference: the
investigator determines exposure status.

Figure 9-2

Thus all of the strengths and weaknesses of cohort studies apply also to RCTs, with one exception:
to study multiple exposures, one would need to re-randomize for each exposure. A few studies
have successfully done this (the Women’s Health Initiative, for instance, randomized women to
both hormone replacement therapy or placebo, and also, separately, to calcium supplements or
placebo), but practically speaking RCTs are usually limited to one exposure.

One additional strength of a randomized trial (which does not apply to cohort studies) is that
if the study is large enough (at least several hundred participants) and exposure allocation is
truly random (i.e., not “every other person” or some other predictable scheme), then there will
be no confounding. One can control, statistically, for measured confounders in a cohort study
(see chapter 7), but what about any unknown and/or unmeasured confounders? The key feature
of randomization is that it accounts for all confounders: known, unknown, measured, and
unmeasured.

Recall from chapter 7 that for a variable to act as a confounder, it must satisfy these conditions:
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Figure 9-3

The variable must cause the outcome, be statistically associated with the exposure, and not be on
the causal pathway (so the exposure does not cause the confounder). By randomly assigning the
exposure, we have ensured that no variables exist that are associated with the exposure.

The picture now looks like this:

Figure 9-4
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Because no variables are more common in the exposed group than the unexposed group (or vice
versa), we have gotten rid of all possible confounding. The benefits of this in terms of internal study
validity cannot be overstated.

However, RCTs also have limitations, and these should not be overlooked. First and foremost,
they are even more expensive than cohort studies. Second, there are often ethical considerations
rendering the randomized trial design unusable. For instance, at this point, we could not ethically
justify randomizing people to a smoking exposure (because its harms are so well-documented,
we cannot ask people to begin smoking for our study). We also cannot randomize where people
live, but certainly where people live has a profound effect on their health.ii Observational studies
of these exposures, on the other hand, are ethically viable because people have already chosen
whether to smoke and where to live, and the epidemiologist merely measures these existing
exposures.

Third, RCTs often have generalizability issues because the kinds of people who are willing to
participate in a study where they (the participant) do not get to choose which study group to be
in are not a random subset of the overall population. For instance, if the only people who have
time to participate in our physical activity intervention are people who are retired, then can we
generalize to the (presumably younger) population who are still working? Perhaps—but perhaps
not. Investigators conducting RCTs also sometimes overly restrict the inclusion criteria to the
extent that results are not generalizable to the overall population. For instance, a well-known trial
of blood pressure control in older adults excluded those with diabetes, cancer, and a host of other
comorbidities.iii Given that most older people have at least one of these chronic diseases, to whom
can we really apply the results?

Lastly, we have to precisely specify the exposure in an RCT. If we are doing a physical activity
intervention, are we going to ask those randomized to the exposed group to walk? To take a yoga
class? Do supervised strength training? If so, how much? How often? With how much intensity?
For how many weeks or months? In a cohort study, we would assess the physical activity people
are doing anyway, and there would be a huge variety of responses, which we could then categorize
in any number of ways. With a randomized trial, we have to decide on all of the details. If we are
wrong, or if we apply the intervention at the wrong time in the disease process, it could seem like
there is no exposure/disease association, when really there is and our exposure was slightly off
somehow.

Randomized trials are often called the “gold standard” of epidemiologic and clinical research
because of their ability to minimize confounding. However, their drawbacks are substantial, and
well-conducted observational studies should not necessarily be discounted merely because they
are not RCTs. Nonetheless, RCTs play an enormous role particularly in medicine, as the Food
and Drug Administration (FDA) requires multiple RCTs prior to approving new drugs and medical
devices. Because of the FDA’s strict requirements, protocols for randomized trials must be
registered (at clinicaltrials.gov) prior to the start of any data collection.
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Outside of pharmaceutical research and development, RCTs, because of their methodologic
strengths, have the potential to change practice when evidence from new, large, well-designed
studies emerge. For example, in 2005 Dr. Paul Ridker and colleagues absolutely changed the way
physicians thought about heart disease prophylaxis in women.iv Prior to publication of this large
(20,000 women in each group) trial, we assumed that, like men, older women should take a baby
aspirin every other day to prevent heart attacks. However, the Ridker trial showed that aspirin acts
differently in women (gender is an effect modifier!), and the aspirin-a-day-prevents-heart-attacks
regimen will not work for most women.

Case-Control Studies

A case-control study is a retrospective design wherein we begin by finding a group of cases
(people who have the disease under study) and a comparable group of controls (people who do not
have the disease):

Figure 9-5

A common mistake made by beginning epidemiology students is to state that “cases are people
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with the disease, who are exposed.” This is incorrect. Cases are people with the disease, and
to avoid differential misclassification, it is important that both cases and controls be recruited
without regard for exposure status. Once we have identified all cases and controls, then we assess
which people were exposed.

Because they do not require following people over time, case-control studies are much cheaper
to conduct than cohorts or randomized trials. They also provide an efficient way to study rare
diseases and diseases with long induction and/or latent periods. Case-control studies can assess
multiple exposures, though they are limited to one outcome by definition.

Case-control studies assess exposure in the past. Occasionally, these past exposure data come
from existing records (e.g., medical records for a person’s blood pressure history), but usually
we rely on questionnaires. Case-control studies are thus subject to recall bias, more so than
prospective designs. Epidemiologists conducting case-control studies need to be particularly
wary of differential recall by case status. It is plausible that people with a given condition will have
spent time thinking about what might have caused it and thus be able to report past exposures
with greater detail than members of the control group. Regardless of case status, the questions
asked must be possible for people to answer. No one can say with certainty exactly what they ate
on a particular day a decade ago; however, most people can probably recall what kinds of foods
they usually ate on most days. Details are thus sacrificed in favor of bigger-picture accuracy (which
may still be of questionable validity, depending on people’s memories). Remember from chapters 5
and 6: ask yourself, “Can people tell me this? Will people tell me this?”

The proper selection of controls is paramount in case-control studies, but unfortunately, who
constitutes a “proper” control is not always immediately obvious. To avoid selection biases, cases
and controls must come from the same target population—that is, if controls had been sick with
the disease in question, they too would have been cases.

For instance, if cases are recruited from a particular hospital, then controls should be sampled
from the population of people who also would have sought care at that hospital if necessary.
This seems simple enough, but it is not always easy to translate into practice. If we are studying
traumatic brain injury (TBI) in children in Oregon, a good place to find cases would be at
Doernbecher Children’s Hospital in Portland. Other hospitals throughout the Pacific Northwest
send kids with severe TBIs to Doernbecher, where a myriad of pediatric specialists are available to
care for them; this hospital thus has a sufficient number of cases for our study.

Where would we get controls? One possibility would be to take as controls other children who
are patients at Doernbecher, for a condition other than TBI. This satisfies the criterion that
controls would also get care at this hospital, because they are getting care at this hospital.
However, to the extent that kids receiving care for other conditions might also have unusual
exposure histories, this could lead to biased estimates of association. Another option would be to
designate as controls children who are not sick, sampled perhaps from a Portland neighborhood
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or two. However, this would also lead to selection bias, because Doernbecher is a referral hospital,
receiving as patients children from a several-hundred-mile radius, not just children who live in
Portland. If kids who live out in more rural areas are different than those who live in the city, we
would have biased estimates of association.

The bottom line is that there is no perfect way to recruit controls, and epidemiologists love to
poke holes in other people’s control groups for case-control studiesv,vi (this is considered good
sport at epidemiology conferences). One way to reduce bias from the control group is to recruit
multiple control groups—perhaps one hospital-based and one community-based. If the results are
not substantially different, then any selection biases that are operating are perhaps not overly
influencing the results.

For long-lasting chronic diseases, the issue of disease duration again comes into play. To avoid
temporality issues, we must know at a minimum the date of diagnosis and ensure that we are
assessing exposures that happened well before that date. For conditions for which the induction
and latent periods are unknown, investigators will sometimes conduct a case-control study that
recruits incident cases of disease over a period of several months. Thus as soon as cases are
recruited, we can ask about past exposures with the confidence that at least the case diagnosis
occurred after those exposures. While a long latent period might still be an issue, one way around
this would be to ask about exposures over multiple time periods—say, 0–5 years ago, 6–10 years
ago, 11–15 years ago, and so on—and compare results across these windows.

Despite these difficulties, case-control studies have made substantial contributions to our
knowledge about health over the years. The surgeon general’s 1964 report Smoking and Healthvii,
for instance, was based on literature that stemmed from a case-control study conducted by
Richard Doll and Austin Bradford Hill.viii
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Cross-Sectional Studies

Recall from chapter 4 that in a cross-sectional study, we draw a single sample from the target
population and assess current exposure and disease status on everyone:

Figure 9-6

The main strength of cross-sectional studies is that they are the fastest and cheapest studies to
conduct. They are thus used for many surveillance activities—the National Health and Nutrition
Examination Survey (NHANES), Pregnancy Risk Assessment Monitoring System (PRAMS), and
Behavioral Risk Factor Surveillance System (BRFSS) are all cross-sectional studies that are
repeated with a new sample each year (see chapter 3)—and in other situations where resources
may be limited and/or immediate answers are required.

Cross-sectional studies are limited by the fact that we sample for neither exposure nor disease
and that we instead “get what we get” when drawing our sample from the population. They thus
cannot be used for either rare exposures or rare diseases.

Another limitation is that we have no data on temporality: we do not know whether the exposure
or the disease came first because we are measuring the prevalence of both at the same point in
time.

Cross-sectional studies along with surveillance (which looks only at measures of disease
frequency, not at exposure/disease relationships) are thus limited to hypothesis generation
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activities. We cannot make (nonsurveillance) public health or clinical decisions based on evidence
only from these studies.

Case Reports/Case Series

In the clinical literature, one often sees case reports. These are short blurbs reporting an
interesting and unusual patient seen by a particular doctor or clinic. A case series is the same
thing but describes more than one patient—usually only a few,ix,x but sometimes several
hundred.xi Case reports and case series have little value for epidemiologists because they are not
studies per se; they have no comparison groups. If a case series is published saying that 45% of
patients in this series with disease Y also have disease Z, this is not useful information for an
epidemiologist. How many patients who do not have disease Y also have disease Z? Without data
on a comparable group of patients who do not have disease Y, there is nothing to be done with the
45% data point given in the case series.

That said, case reports and case series can be extremely useful for public health professionals.
Because by definition they present data from unusual patients, they can often act as a kind
of sentinel surveillance, drawing our attention to a new, emerging public health threat. For
example, in 1941, a physician from Australia noticed an increase in a kind of birth defect affecting
infant eyes. He published this as a case series,xii hypothesizing that maternal rubella infection
was the cause. Other physicians from around the world chimed in that they, too, had seen a
recent sudden increase in this birth defect in women whose pregnancies were complicated by
rubella,xiii,xiv,xv leading to our current practice of checking for rubella antibodies in all pregnant
women and vaccinating those without immunity. As another example, in the early 1980s, a set of
case series published by the Centers for Disease Control and Prevention (CDC) in its Morbidity
and Mortality Weekly Report drew our attention to unusual kinds of cancers and opportunistic
infections occurring in otherwise young, healthy populations—our first inkling of the HIV/AIDS
epidemic.x,xvi,xvii,xviii More recently, in 2003, case reports detailing an unusual, deadly respiratory
infection in people traveling to Hong Kong led to increased global public health and clinical
awareness of this unusual set of symptoms, allowing immediate quarantine of affected individuals
who had traveled back to Toronto.xix,xx,xxi This quick action prevented SARS from becoming a
global pandemic.
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Ecologic Studies

Ecologic studies are those in which group-level data (usually geographic) are used to compare rates
of disease and/or disease behaviors. For instance, this picture showing variation in seat belt use
by state from chapter 1 is a kind of ecologic study:

Figure 9-7 Source: https://www.cdc.gov/motorvehiclesafety/seatbelts/seatbelt_map.html

By comparing rates of seat belt use across different states, we are comparing group-level data,
not data from individuals. While useful, this kind of picture can lead to many errors in logic. For
example, it assumes that everyone in a given state is exactly the same—obviously this is not true.
While it is true that on average, people in Oregon wear their seat belt more often than people from
Idaho, this does not mean that everyone in Oregon wears their seat belt more often than everyone
in Idaho. We could easily find someone in Oregon who never wears their seat belt and someone in
Idaho who always does.

The above logical error—ascribing group-level numbers to any one individual—is an example of
the ecologic fallacy. This also comes into play when looking at both exposure and disease patterns
using group-level data, as in this example, looking at per-capita rice consumption and maternal
mortality in each country:
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Figure 9-8. Created with data from here and here.

From looking at this graph, it appears that the more rice that is consumed by citizens of a
particular country, the higher the maternal mortality rate. The ecologic fallacy here would stem
from assuming that it is the rice consumers who are dying from complications related to
pregnancy or birth, but we cannot know whether this is true using only group-level data.

With all of these problems, then, why conduct ecologic studies? Even more so than cross-sectional
studies, they are quick and cheap. They also always use preexisting data—census estimates for
per-county income; the amount of some product (such as rice) consumed by a given group of
people (often tracked by sellers of that product); and recorded information on the prevalence
of certain diseases (usually publicly available via the websites of health ministries for various
countries or as by-country comparisons published by the World Health Organization). The use of
ecologic studies is limited only to hypothesis generation, but they are so easy that they can be a
good first step for a totally new research question.
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Systematic Reviews and Meta-analyses

Because epidemiology relies on humans, it is more prone to both bias and confounding than other
sciences. Does this render it useless? Absolutely not, though one must have a robust appreciation
for the assumptions and limitations inherent in epidemiologic studies. One of these limitations is
that barring exceptionally well-done, randomized controlled trials (as the Ridker trial,iv mentioned
previously), we rarely change public health or clinical policy based on just one epidemiologic study.
Rather, we do one study, then another, and then another, using better and better study designs
until eventually there is a body of evidence on a topic that stems from different populations, uses
different study designs, perhaps measures the exposure in slightly different ways, and so on. If all
these studies tend to show the same general results (as did all the early studies on smoking and
lung cancer), then we start to think that the association might be causal (see chapter 10 for more
detail on this) and implement public health or clinical changes.

When results of existing studies on a topic are more mixed, there is a formal way of synthesizing
their results across all of them, to arrive at “the” answer: meta-analysis (or systematic review—they
differ slightly, as discussed below). The procedure for either of these is the same:

1. Determine the topic—precisely. Do we care about correlates of physical activity in kids
generally, or only in PE class at school? Only at home? Everywhere? Is our focus all
children or only grade-school kids? Only adolescents? There often is no right answer, but
as with defining our target population (see chapter 1), this needs to be decided ahead of
time.

2. Systematically search the literature for relevant papers. By systematically, I mean using and
documenting specific search terms and placing documented limits (language, publication
date, etc.) on the search results. The key is to make the search replicable by others. It is
not acceptable to just include papers that authors are aware of without searching the
literature for others—doing so results in a biased sample of all the papers that should have
been included.

3. Narrow down the search results to only those directly addressing the topic as determined in
Step 1.

4. For each of the studies to be included, abstract key data: the exposure definition and
measurement methods, the outcome definition and measurement methods, how the
sample was drawn, the target population, the main results, and so on.

5. Determine whether the papers are similar enough for meta-analysis (there are formal
statistical procedures to test for this, which are beyond the scope of this book).xxii(p287)

1. If they are, then researchers essentially combine all the data from all the included
studies and generate an “overall” measure of association and 95% confidence
interval.

2. If they are not, then the authors will synthesize the studies in other meaningful ways,
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comparing and contrasting their results, strengths, and weaknesses and arriving at
an overall conclusion based on the existing literature. An overall measure of
association is not calculated, but usually the authors are able to conclude that some
exposure either is or is not associated with some outcome (and perhaps roughly the
strength of that association).

6. Assess the likelihood of publication bias (again, there are formal statistical methods for
this)xxii(pp197-200) and the degree to which that may or may not have affected the results.

7. Publish the results!

Ideally, at least 2 different investigators will conduct steps 2–4 completely independently of each
other, checking in after completion of each step and resolving any discrepancies, usually by
consensus.xxiii This provides a check against un- or subconscious bias on the part of the authors
(remember: we’re all human and therefore all biased). For systematic reviews and meta-analyses
conducted after 2015 or so, the protocol for the review (search strategy, exact topic, etc.) should be
registered prior to step 2 with a central registry, such as PROSPERO. This provides a check against
bias—authors who deviate from their preregistered protocols should provide very good reasons
for doing so, and such studies should be interpreted with extreme caution.

Results from meta-analyses are often presented as forest plots that plot each included study’s
main result (with the size of the square corresponding to sample size) and an overall estimate
of association is indicated as a diamond at the bottom. Here is an example from a meta-analysis
of chocolate consumption and systolic blood pressure (SBP, the top number in a blood pressure
reading):
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Figure 9-9. Adapted from Reid et.al., BMC Medicine 2010

You can see from this forest plot that the majority of studies showed a decrease in SBP for people
who ate more chocolate, though not all studies found this. Some point estimates are quite close to
0.0 (which is the “null” value here, because we’re looking at change in a single number, not a ratio),
and 10 of the confidence intervals cross 0.0, indicating that they are not statistically significant.
Nonetheless, 6 studies–the largest studies, since their confidence intervals are the narrowest–are
statistically significant, and all of these in the direction of chocolate being beneficial. Indeed, the
overall (or “pooled”) change in SBP and 95% CI shown at the bottom (the black diamond) indicates
a small (approximately 3 mm Hg) reduciton in SBP for chocolate consumers. Does this mean we
should all start eating lots of chocolate? Not necessarily: a 3 mm Hg (“millimeters of mercury”–still
the units in which we measure blood pressure, despite mercury not being involved for several
decades now) drop in SBP is not clinically significant. A normal SBP is between 90 and 120, so a 3
mm Hg drop puts you at 87-117–likely not even a noticeable physiologic change.

As alluded to above, meta-analysis requires a certain similarity among the studies that will be
pooled (e.g., they need to control for similar, if not identical, confounders). Often, this is not the
case for a given body of literature—in which case, the authors will systematically examine all the
evidence and do their best to come up with “an” answer, taking into consideration the quality of
individual studies, the overall pattern of results, and so on. For example, in a systematic review of
risk-reducing mastectomy (RRM), the prophylactic surgical removal of breasts in women who do
not yet have breast cancer, but who have the BRCA-1 or BRCA-2 genes and thus are at very high
risk (where BRRM refers to bilateral RRM—having both breasts removed). The authors described
the overall results of this study as follows:

Twenty-one BRRM studies looking at the incidence of breast cancer or disease-specific
mortality, or both, reported reductions after BRRM, particularly for those women with BRCA1/2
mutations.…Twenty studies assessed psychosocial measures; most reported high levels of
satisfaction with the decision to have RRM but greater variation in satisfaction with cosmetic
results. Worry over breast cancer was significantly reduced after BRRM when compared both
to baseline worry levels and to the groups who opted for surveillance rather than BRRM, but
there was diminished satisfaction with body image and sexual feelings.xxvii(p2)

The authors then concluded:

While published observational studies demonstrated that BRRM was effective in reducing
both the incidence of, and death from, breast cancer, more rigorous prospective studies are
suggested. [Because of risks associated with this surgery] BRRM should be considered only
among those at high risk of disease, for example, BRCA1/2 carriers.xxvii(p2)

No overall “pooled” estimate of the protective effect associated with RRM is provided, but the
authors are nonetheless able to convey the overall state of the literature, including where the body
of literature is lacking.
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Systematic reviews and meta-analyses are excellent resources for learning about a topic.
Realistically, no one has the time to keep up with the literature in anything other than a very
narrow topic area, and even then it is really only a boon to researchers in that field to take note
of new individual studies. For public health professionals and clinicians not routinely engaging in
research, relying on systematic reviews and meta-analyses provides a much better overall picture
that is potentially less prone to the biases found in individual studies. However, care must be
taken to read well-done reviews. The title of the paper should include either systematic review or
meta-analysis, and the methods should mirror those outlined above. Be wary of review papers that
are not explicitly systematic—they are extremely prone to biases on the part of the authors and
probably should be ignored.1

Conclusions

The figure below is a representation of the relative cost and internal validity of the study designs
discussed in this chapter:

1. Metasynthesis is a legitimate technique for systematic reviewing qualitative literature. The papers to
watch out for are the ones called “integrative review,” “literature review,” or just “review”—anything
that is not “systematic review.”
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Figure 9-10

There are many types of epidemiologic studies, from reports of a single, unusual patient up to
formal meta-analyses of dozens of other studies. The relative validity of these in terms of using
their evidence to shape policy varies widely, but with the exception of review papers, the “better”
studies are the more expensive and time-consuming ones. Review papers in and of themselves
are not particularly expensive, but they cannot be done until numerous other studies have been
published, so if you include those as indirect costs, they take a lot of time and money. The
4 main study types (cross-sectional, case-control, cohort, and RCT) each have strengths and
weaknesses, and readers of the epidemiologic literature should be aware of these. There are
occasions, independent of cost or validity considerations, when one design or another is preferred
(e.g., case-control for rare diseases).

126 | Marit L. Bovbjerg



References

i. Williams RA, Mamotte CD, Burnett JR. Phenylketonuria: an inborn error of phenylalanine
metabolism. Clin Biochem Rev. 2008;29(1):31-41.

ii. Could where you live influence how long you live? RWJF. https://www.rwjf.org/en/library/
interactives/whereyouliveaffectshowlongyoulive.html. Accessed February 19, 2019.

iii. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med.
2017;377(25):2506. doi:10.1056/NEJMx170008

iv. Ridker PM, Cook NR, Lee I-M, et al. A randomized trial of low-dose aspirin in the primary
prevention of cardiovascular disease in women. N Engl J Med. 2005;352(13):1293-1304.
doi:10.1056/NEJMoa050613. (↵ Return 1) (↵ Return 2)

v. Wacholder S, McLaughlin JK, Silverman DT, Mandel JS. Selection of controls in case-control
studies, I: principles. Am J Epidemiol. 1992;135(9):1019-1028. (↵ Return)

vi. Wacholder S, Silverman DT, McLaughlin JK, Mandel JS. Selection of controls in case-control
studies, II: types of controls. Am J Epidemiol. 1992;135(9):1029-1041. (↵ Return)

vii. Health CO on S and. Smoking and tobacco use: history of the Surgeon General’s Report.
Centers for Disease Control and Prevention. 2017. http://www.cdc.gov/tobacco/
data_statistics/sgr/history/. Accessed October 30, 2018. (↵ Return)

viii. Doll R, Hill AB. Smoking and carcinoma of the lung. Br Med J. 1950;2(4682):739-748. (↵ Return)

ix. Bowden K, Kessler D, Pinette M, Wilson E. Underwater birth: missing the evidence or missing
the point? Pediatrics. 2003;112(4):972-973.

x. Centers for Disease Control and Prevention (CDC). A cluster of Kaposi’s sarcoma and
Pneumocystis carinii pneumonia among homosexual male residents of Los Angeles and Orange
counties, California. MMWR Morb Mortal Wkly Rep. 1982;31(23):305-307.

xi. Cheyney M, Bovbjerg M, Everson C, Gordon W, Hannibal D, Vedam S. Outcomes of care
for 16,924 planned home births in the United States: the Midwives Alliance of North America
statistics project, 2004 to 2009. J Midwifery Womens Health. 2014;59(1):17-27. (↵ Return)

xii. Gregg NM. Congenital cataract following German measles in the mother. Trans Opthalmol Soc
Aust. 1941;3:35-46. (↵ Return)

xiii. Greenberg M, Pellitteri O, Barton J. Frequency of defects in infants whose mothers had rubella
during pregnancy. J Am Med Assoc. 1957;165(6):675-678. (↵ Return)

Foundations of Epidemiology | 127



xiv. Manson M, Logan W, Loy R. Rubella and Other Virus Infections during Pregnancy. London: Her
Royal Majesty’s Stationery Office; 1960. (↵ Return)

xv. Lundstrom R. Rubella during pregnancy: a follow-up study of children born after an epidemic of
rubella in Sweden, 1951, with additional investigations on prophylaxis and treatment of maternal
rubella. Acta Paediatr Suppl. 1962;133:1-110. (↵ Return)

xvi. Centers for Disease Control (CDC). Possible transfusion-associated acquired immune
deficiency syndrome (AIDS)—California. MMWR Morb Mortal Wkly Rep. 1982;31(48):652-654. (↵
Return)

xvii. Centers for Disease Control (CDC). Pneumocystis pneumonia—Los Angeles. MMWR Morb
Mortal Wkly Rep. 1981;30(21):250-252. (↵ Return)

xviii. Centers for Disease Control (CDC). Unexplained immunodeficiency and opportunistic
infections in infants—New York, New Jersey, California. MMWR Morb Mortal Wkly Rep.
1982;31(49):665-667. (↵ Return)

xix. Centers for Disease Control and Prevention (CDC). Severe acute respiratory
syndrome—Singapore, 2003. MMWR Morb Mortal Wkly Rep. 2003;52(18):405-411. (↵ Return)

xx. Centers for Disease Control and Prevention (CDC). Update: severe acute respiratory
syndrome—United States, May 14, 2003. MMWR Morb Mortal Wkly Rep. 2003;52(19):436-438. (↵
Return)

xxi. Centers for Disease Control and Prevention (CDC). Cluster of severe acute respiratory
syndrome cases among protected health-care workers—Toronto, Canada, April 2003. MMWR
Morb Mortal Wkly Rep. 2003;52(19):433-436. (↵ Return)

xxii. Egger M, Smith GD, Altman DG, eds. Systematic Reviews in Health Care: Meta-analysis in
Context. London: BMJ Publishing; 2001. (↵ Return 1) (↵ Return 2)

xxiii. Harris JD, Quatman CE, Manring MM, Siston RA, Flanigan DC. How to write a systematic
review. Am J Sports Med. 2014;42(11):2761-2768. doi:10.1177/0363546513497567 (↵ Return)

xxiv. Gilbert R, Salanti G, Harden M, See S. Infant sleeping position and the sudden infant death
syndrome: systematic review of observational studies and historical review of recommendations
from 1940 to 2002. Int J Epidemiol. 2005;34(4):874-887. doi:10.1093/ije/dyi088

xxv. CDC. Safe sleep for babies. Centers for Disease Control and Prevention. 2018.
https://www.cdc.gov/vitalsigns/safesleep/index.html. Accessed January 10, 2019

xxvi. Task Force on Sudden Infant Death Syndrome, Moon RY. SIDS and other sleep-related

128 | Marit L. Bovbjerg



infant deaths: expansion of recommendations for a safe infant sleeping environment. Pediatrics.
2011;128(5):1030-1039.

xxvii. Carbine NE, Lostumbo L, Wallace J, Ko H. Risk-reducing mastectomy for the prevention
of primary breast cancer. Cochrane Database Syst Rev. 2018;4:CD002748. doi:10.1002/
14651858.CD002748.pub4 (↵ Return 1) (↵ Return 2)

Foundations of Epidemiology | 129



10. Causality and Causal Thinking in
Epidemiology

Learning Objectives

After reading this chapter, you will be able to do the following:

1. Discuss the 3 tenets of human disease causality
2. Explain how causal thinking plays a role in the epidemiology research process
3. Apply epidemiologic causal thinking to common exposure/disease problems

I have mentioned in previous chapters that it is difficult to use epidemiologic studies to “prove”
that an exposure/disease association is causal. Randomized trials are occasionally an exception,
and I discuss this further below. First, however, I will summarize various ways of thinking about
causes of disease in humans, and then in the second half of the chapter, I will discuss how these
causal theories apply to the epidemiologic literature specifically.

Causes of Human Disease

It is now a well-established idea that any given case of disease in a human is multifactorial. That is,
there is no one specific cause per se but rather a multitude of factors that work in concert to cause
a disease to begin. Various authors have described this basic concept with theoretical models: the
sufficient component cause model (a.k.a. “causal pies”),i the social-ecologic model,ii and as the web
of causation,iii among others. Though these models differ in their details, they share numerous
common ideas in addition to multicausality, which is discussed below.

Tenets of human disease #1

All cases of disease have multiple causes.
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First, a model for thinking about causes of disease, for those of you who think in pictures. Think of
a jar, the kind in which you might serve drinks at a party:

Figure 10-1.
Source: https://www.pinterest
.com/pin/
91057223695271823/

Nonmodifiable characteristics of the person—genetics, family socioeconomic status while the
person is young, and so on—determine the size of each jar (one for each disease) with which one
starts. For example, someone with a high genetic risk of a certain disease starts with a smaller
jar than someone without those genes. As the person moves through life, they encounter adverse
exposures that add liquid to the jar; conversely, they can encounter protective exposures that
drain liquid back out from the bottom spigot. In this model, the disease in question would begin
when the jar is full to the top.

Using breast cancer as an example, the size of my “breast cancer jar” is determined by my genetics,
the intrauterine environment in which I was a fetus (including anything my mother might have
been exposed to while pregnant), my family’s situation while I was growing up (including the laws
and regulations that applied where we lived), and my (genetically determined) age at menarche
and menopause. Then as I move through life, the fullness of my jar changes as I encounter
detrimental and protective exposures. So every alcoholic drink adds a bit to the jar, as does any
use of hormonal birth control, since these are associated with an increased risk of breast cancer.
Conversely, every bout of physical activity and every pregnancy (both associated with reduced
risks of breast cancer) take a bit out.iv,v,vi

Tenets of human disease #2:
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Not all causes act at the same time

If I have a strong family history of breast cancer, and thus start life with a smaller jar, the number
of adverse exposures I can withstand before cancer starts is much less than for someone without
such a history (who has a bigger jar). Furthermore, each person might have a slightly different
set of exposures that are either raising or lowering the level in their respective jars. While it is
well-established at this point that smoking causes lung cancer,vii there are cases of lung cancer
that arise in nonsmokers (so other exposures filled their jars), and there are lifelong smokers who
nonetheless never develop lung cancer (their jars were likely big enough to start with that even
thousands of cigarettes are not enough to fill it up).

Tenets of human disease #3:

There are many different ways a jar could get filled; there are many different collections of exposures that,
taken together, can cause a case of disease.

The tenets of disease causality we have discussed thus far have a number of logical sequelae.
First, as public health and clinical professionals, we do not need to identify all possible causes of a
disease before taking action. If we are reasonably sure that smoking is a contributing cause of lung
cancer in at least some people, then we will be able to prevent some cases of lung cancer if we can
eliminate smoking as an exposure from at least some of the population. It does not matter that not
all cases of lung cancer include smoking in their jars; it is enough to know that some of them do.

Disease Onset Timing

Once a person accumulates enough causes (their jar is full), their disease begins. We have no idea and no way of
ever knowing, given current technologies, how many such causes are “enough”; possibly, it is different for each
person. We consider a disease “caused” once it begins. Thus, when thinking about causes of disease in this way,
a preventive factor is one that either prevents disease altogether or delays disease onset for some length of
time. We often talk about “preventing death” from various causes; we cannot, of course, prevent death. We can
only delay it.

Second, there are implications for the so-called strength of individual causes as well as
attributable fractions. You will often hear people calling particular causes “strong” or

132 | Marit L. Bovbjerg



“weak”—usually referring to the overall, population-level measure of association between the
given exposure and the outcome. However, this idea only works if the prevalence of all causes
in the population does not change. If we eliminate smoking, which in the US has odds ratios of
around 40.0 when associating it with lung cancer,viii suddenly radon (ORs for radon-related lung
cancer are usually more like 1.5 or 3.0ix) will look like a much stronger cause of lung cancer.
Attributable fractions supposedly quantify the proportion of cases that were caused by—or can be
“attributed to”—a particular exposure (see discussion of attributable risk under “Risk Difference” in
chapter 4). However, because each case of disease has multiple causes filling its jar, the attributable
fractions for all possible causes will sum to well over 100%, rendering this measure of association
rather less than useful.

Determining When Associations Are Causal in Epidemiologic
Studies

As mentioned in chapter 4, in epidemiology we look for evidence that exposures and outcomes
are associated statistically. Epidemiologists are usually very careful not to use causal language.
As you read studies from the epidemiology literature, you will see phrases like “associated with,”
“evidence in favor of,” “possible,” and other similar, carefully non-definitive semantics. However,
sooner or later we must stop hedging and determine whether something is or isn’t causal, because
public health and clinical policy cannot be based on associations. What is the protocol for doing
this? This schematic displays a possible flow chart for an epidemiologic research question:
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Figure 10-2

Only if we determine that the association is indeed real and not an artifact of bias, confounding,
or random chance would we begin to assess whether or not it might be causal. This assessment
requires a thorough understanding of the research question, of any underlying biology and
physiology, and of previous work on the topic, and this assessment is not typically done by one
person alone. Rather, we each do our studies, publish them, read other people’s research, talk to
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each other at conferences, consult with colleagues from related disciplines, and so on. Slowly,
collectively, the broad public health field moves toward a consensus for a given exposure/disease
causal relationship.

There exist numerous checklist-style lists of criteria for determining whether an epidemiologic
association is causal; the most famous are the “causal considerations” published by Sir Austin
Bradford Hill—he was very careful not to call them criteria because they are just things to think
about rather than a method for conclusively obtaining “the” answer.x For any given exposure/
disease causal question, going through such lists is certainly a useful exercise, but I urge caution,
as they are far from definitive in either direction. For instance, one of the items from Hill’s
article is “specificity,” meaning that one cause leads to one effect. This works well for infectious
diseases—HIV causes AIDS, but not also other things (although progression to full-blown AIDS
requires causes in addition to HIV infection, such as lack of access to antiretroviral drugs)—but less
well for chronic diseases. For instance, if we insist on meeting Hill’s specificity criterion, smoking
cannot be a cause of lung cancer because it also appears to cause heart disease, oropharyngeal
cancer, and other outcomes. We know this to be untrue: smoking certainly causes lung cancer
(and likely all the other conditions too). However, many of the other considerations on Hill’s list do
apply in the case of smoking: there is a dose-response association (more smoking correlates to a
higher risk of lung cancer), there is biologic plausibility (cigarettes contain compounds known to
be carcinogens), and there is consistency (all studies on the topic reach the same conclusion).

Methods & Considerations

Of all the (non-review) study designs we have considered, RCTs provide the best evidence in favor
of causality, assuming these studies were correctly conducted and showed an association. This is
because the randomization process, as discussed in previous chapters, renders confounding moot:
if everything is the same between the 2 groups except for the intervention, then that intervention
almost certainly is responsible for any difference in outcomes between the 2 groups. Indeed, one
of Hill’s considerations is whether there exists experimental (i.e., RCT) evidence on the topic.
However, it is always possible that bias or random error is instead responsible for the results, as
RCTs are not inherently free of these. Readers of randomized trials must use the same caution
as readers of other types of studies and carefully evaluate the study’s methods and results before
drawing firm conclusions.

There are, however, numerous situations in which RCTs are not feasible or not ethical. For these
research topics, in addition to the study design possibilities mentioned in chapter 7 (matching or
enrolling a narrowly limited sample), there are a number of statistical methods that essentially
aim to simulate a randomized trial using observational data. Examples of such methods include
propensity score matching (which allows matching on dozens of variables at once, a feat that is
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not possible with conventional matching protocols) and inverse probability weighting (in which
each “type” of observed participant—underweight, 80-year-old Black women with hypertension,
perhaps—contributes to the final analysis according to how common that type of person is in the
dataset and the target population). Doctoral students in epidemiology take entire courses on such
causal inference methods; additional details are beyond the scope of this book, though interested
students might consult a recent, introductory-level article series on this topic.xi,xii,xiii

Conclusion

Public health and clinical professionals rely on knowing whether a particular exposure causes a
particular disease because intervention and policy changes depend on this knowledge. However,
determining causality using epidemiologic research is a tricky proposition that relies on
knowledge of underlying biology, physiology, and/or toxicology; awareness of any existing in vitro
or animal studies; and careful readings of the existing epidemiologic literature on a given topic. All
cases of disease have multiple causes, and these do not act simultaneously; each case of disease
likely has a slightly different mix of contributing causes. However, we do not need to know all
possible causes before taking action, as we can prevent some cases (stop some jars from filling) by
intervening on even just a single known cause.
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11. Screening and Diagnostic Testing

Learning Objectives

After reading this chapter, you will be able to do the following:

1. Differentiate between screening and diagnostic testing
2. Calculate and interpret common test characteristics
3. Discuss the role of public health in screening programs

Abbreviations used in this chapter

Dx = disease
Sx = symptoms
Hx = history
Tx = treatment
Sn = sensitivity
Sp = specificity
PPV = positive predictive value
NPV = negative predictive value
Pt = patient.

Introduction

In this chapter, we will cover both screening and diagnostic testing. Though public health
professionals are not usually directly involved with diagnosing patients, the tests used for
screening and diagnostic testing are often the same (the difference being context), and the same
mathematical tools are used to assess the accuracy of these tests. In addition, public health
professionals who are involved in disease surveillance may need to know how to interpret these
results when evaluating surveillance case definitions.
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Screening versus Diagnostic Testing

The word screening refers to testing an asymptomatic population for a particular condition in
order to identify those who have the condition so that they can be treated early. Common
screening tests currently used in the US include various cancer screenings (mammograms, pap
smears, skin checks for those at high risk of melanoma); routine hypertension screening at
doctors’ offices (this is why they take your blood pressure every time you go); hearing, vision,
and dental screening at elementary schools; annual tuberculosis and HIV screening among health
care workers, and so on. Public health officials are often involved in screening programs either
directly (providing personnel to go to the elementary school to conduct the hearing screenings)
or indirectly (health education campaigns to increase the use of pap smears).

Diagnostic testing, on the other hand, is performed on a patient who is symptomatic in order to
determine what condition they have. Clinicians perform what is called differential diagnosis when
confronted with a patient with new complaints. In a nutshell, the doctor, nurse practitioner, or
other health care provider takes all known information from the patient’s history and physical
exam and decides what could be wrong. For instance, if a 24-year-old female presents to the
clinic complaining of visual disturbances followed by severe headache, this could be any number of
things: concussion, migraine with aura, hemorrhagic stroke1, meningitis, and so on. The clinician’s
task is to determine which one it is so that the patient can be treated correctly. The differential
diagnosis process involves administering diagnostic tests that are designed to either rule in or rule
out conditions on the differential diagnosis list.

Returning to our example, the likelihood of concussion could be assessed by questioning the
patient about any recent head or neck trauma (questions can be diagnostic tests!). If the patient
denies such trauma (e.g., she has not played a contact sport, fallen, been in a motor vehicle
accident, etc. in the last 24 hours), then we have probably ruled out concussion. The next task
would be to rule out hemorrhagic stroke— strokes in young people are very rare but not unheard
of, and the faster they are treated, the better the prognosis. We could rule out hemorrhagic stroke
by looking for blood in the patient’s cerebrospinal fluid (the diagnostic test in that case is a spinal
tap). Assuming that the patient’s spinal fluid is indeed clear of blood, we would then test to rule

1. There are two kinds of strokes: ischemic and hemorrhagic. Ischemic strokes are caused by blood
clots in the brain, and hemorrhagic strokes are caused by bleeding in the brain. The latter are much
more common in young people (ischemic strokes would be almost unheard of in an otherwise-
healthy 24-year-old female), though ischemic strokes are more prevalent overall. These are really
two different diseases, but they produce a very similar set of symptoms, so prior to our
understanding the disease processes behind them, all such symptoms were classified as “stroke.”
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out meningitis. If that test is also clear, then we could safely assume that she has a migraine and
offer treatment accordingly.

The order in which one rules in or rules out conditions on the differential diagnosis list depends on
their relative severity, the costs associated with various tests, and the prevalence of the conditions
in question. In this scenario, it was very important to quickly rule out stroke, because if it were
a stroke, treatment would need to be initiated as soon as possible—whereas a migraine can wait
an hour without causing further harm. This isn’t pleasant for the person with the migraine, but
it won’t kill them or cause long-term disability. A brain tumor is also on the differential diagnosis
list; however, that condition is very rare in patients in their 20s, and delaying treatment for a
brain tumor by 24 hours would not matter (unlike for a stroke, which is also rare but for which
one cannot delay treatment). Thus after ruling out concussion, meningitis, and stroke, we would
treat the patient for a migraine. If she did not get better in 24–48 hours, we would return to the
differential diagnosis list and possibly test for neuroblastoma or other brain cancers.

As mentioned above, often the same tests are used both for screening and for diagnostic testing;
the distinction depends on context. If I do not have any symptoms of breast cancer and have a
mammogram, then it is a screening test (screening is done in asymptomatic populations). If on the
other hand I find a lump in my breast, go to the doctor, and she sends me for a mammogram, it is
now a diagnostic test, because I am symptomatic.

Disease Critical Points and Other Things to Understand about
Screening

The figures in this section and the idea of critical points are adapted from lectures given by Dr. David
Slawson at the University of Virginia Medical System, Department of Family Medicine, in 2004-2005.

The natural course of a medical condition looks like this:

Figure 11-1
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The first step is the biological onset of the disease. This could be the first mutation that turns the
cell into a cancerous cell. It could be a virus getting in through someone’s mucous membranes and
beginning to replicate. Importantly, biological onset is not observable.

Eventually, the person with the disease will have symptoms severe enough that they seek
treatment: they go to a clinic, they go to the emergency room, they go to the pharmacy and buy
some decongestant; they will eventually seek treatment of some kind. The exact timing will vary
from person to person and from disease to disease.

The final stage in our natural history of disease is the outcome. Either they get better or they don’t.

So then what is screening? This is the idea of screening:

Figure 11-2

Remember that a screening program starts with asymptomatic people — normal, everyday people
— and tests them to see if they have the disease.

The idea is to find the disease early. Screening is not primary prevention.2 Screening finds early
disease; it does not prevent the disease from occurring. Screening might well prevent poor
outcomes from the disease (secondary prevention), but it doesn’t prevent the disease itself.

Thus the first criterion for a successful screening program is that a test exists that can detect
early, pre-symptom disease. This is not always the case — for instance, we don’t screen for ovarian
cancer partly because no such test exists at this time. A second criterion for a successful screening
program is that the condition is prevalent enough and/or the costs of not treating it are high
enough to make it worth screening for on a population level. Another reason we don’t screen for
ovarian cancer is because the prevalence is very low, and thus a screening program would arguably
not be worth the resources.

2. This mistake regularly appears in the literature! See for instance Ring et al.i
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The next important idea is that every disease has a critical point. If you treat the disease before
it gets to the critical point, you can make a difference in the outcome: the patient will be cured,
will live longer, or will live better. However, if you treat the disease after the critical point, the
treatment will have no effect (this is why we have hospice—after a certain point, further aggressive
treatments are not useful and are potentially even harmful).

When thinking of implementing a screening program for a given disease, one must consider the
timing of the critical points. For instance, what if the critical point (represented by the red line) for
a given disease occurs here:

Figure 11-3

In the above scenario (Figure 11-3), it would not be cost-beneficial to screen for this condition,
because detecting it early doesn’t help. By the time people seek help for their symptoms, there is
still plenty of time to treat them. Screening in this scenario would not cause physical or emotional
harm per se, but it would waste resources. We are learning that both prostate cancer and breast
cancer probably fall into this category. Except for certain very high-risk groups, most men are no
longer routinely screened for prostate cancer, and there is increasing evidence that mammograms
might only be truly useful for high-risk women.ii

What if instead the critical point is here:
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Figure 11-4

In this case (Figure 11-4), we also probably would not screen for this condition because by the
time we screen, it’s already too late. Screening in this scenario would cause emotional harm
because people would know that they have an untreatable disease for a longer period of time. For
a highly contagious condition, however, we might screen people in this scenario—not so that we
can treat them but so that they can take precautions and not spread it to others. Before we had
antiretroviral drugs, for instance, we screened high-risk populations for HIV.

Screening, then, is most useful in this scenario:

Figure 11-5

In this case, early detection does make a difference. By the time some patients present with
symptoms, it is too late to treat them, but if we can detect the disease earlier than that, there is
still time to help them. We still might not implement a population-wide screening program, if the
disease is rare and the cost of the screening test quite high, for instance. But only in this scenario,
where the critical point lies between screening detection and treatment seeking, should we even
consider screening.
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Accuracy of Screening and Diagnostic Tests

There are 4 test characteristics that we use to quantify how accurate a particular test is:
sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The
first 2 are known as “fixed test characteristics” because they do not change, regardless of disease
prevalence. The PPV and NPV, however, do change when disease prevalence in the underlying
population changes.

Calculation of these 4 test characteristics requires that we arrange our data in a 2 × 2 table. This
time, however, instead of exposure on the left, we have the test result on the left:

Table 11.1

D+ D- Total

T+ TP FP TP+FP

T- FN TN FN+TN

Total TP+FN FP+TN TP+FP+TN+FN

Looking at the screening 2 × 2 table, you’ll notice that the cells are no longer labeled ABCD.
They still could be—and indeed, in many textbooks they are. However, I prefer this notation
because it reminds you what each cell is in this scenario. Specifically, the top left cell contains
“true positives”—these individuals do have the disease (according to a gold standard diagnosis
method–see below) and tested positive using the screening or diagnostic test. The top right cell,
on the other hand, contains “false positives”—people who tested positive using the screening
or diagnostic test but do not actually have the disease. The bottom left cell contains the “false
negatives”—these individuals have the disease but for some reason test negative. Finally, the
bottom right cell is comprised of the “true negatives,” who do not have the disease and test
negative.

One obtains data for a screening 2 × 2 table by administering both the test that we’re evaluating
and a gold-standard diagnostic method to a large group of people. For example, the gold standard

144 | Marit L. Bovbjerg



for diagnosing Alzheimer’s disease is the presence of a certain type of brain plaque, observable
upon autopsy. Since this is not a feasible thing to do to living elderly patients who have suspected
dementia, researchers developed the Mini Mental State (MMS) test.iii To create the above 2 × 2
table, then, one would administer the MMS to a group of elderly persons and categorize their
results as either testing positive (T+) or testing negative (T−). Then one would collect autopsy data
as they die and categorize those same individuals as either having had Alzheimer’s (D+) or not (D−).

In other scenarios, both can be done at the same time (rather than waiting for death)—for example,
using the Beck Depression Inventory (BDI) as a test for depression and comparing results against
a series of visits with a mental health professional qualified to definitively diagnose depression.
The reason for having a test in the latter case is that the BDI is much quicker and cheaper
than sending everyone for a formal psychiatric evaluation; the BDI is also a self-administered
questionnaire, which can be utilized in large cohort studies (whereas the clinician-mediated
diagnosis is untenable for large and/or geographically disparate study populations).

Note that one can calculate prevalence of the disease in the sample using a screening 2×2 table:
everyone with disease (TP+FN) over everyone in the sample.

Sensitivity and Specificity

Sensitivity (Sn) is the probability that a patient tests positive given that they have the disease. In
probability notation, this is written as follows:

Sn = P(T+|D+) =

Specificity (Sp) is the probability that a patient tests negative given that they do not have the
disease:

Sp = P(T-|D-) =
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Both of these values are proportions and are usually expressed as percentages.

Recall that sensitivity and specificity are fixed test characteristics—they do not change if the
prevalence of the condition in the sample changes. Sensitivity and specificity values are published
when new tests become available, and are used by clinicians to decide what tests to order.

For diagnostic testing, recall that we are trying sometimes to rule in and other times to rule out.
Two common mnemonic devices are SpIN and SnOUT: a test with high specificity, when positive,
rules IN, and a test with high sensitivity, when negative, rules OUT. To understand why, look
back at the formulae. The denominator for specificity is FP+TN (all the individuals without the
disease), and the numerator is just TN. If the specificity is high (close to 100%), then FP must be
very low. Thus a patient with a positive result on a highly specific test is probably a true positive.
The same logic can be used to understand SnOUT: the denominator for sensitivity is TP+FN (all
the individuals with the disease), and the numerator is just TP. If sensitivity is near 100%, then by
definition there are few false negatives. A negative result on a highly sensitive test is thus almost
certainly a true negative. Thus clinicians will choose a test with high sensitivity when they want to
rule out (as in concussion or stroke, in our example above), and a test with high specificity when
they want to rule in.

For screening purposes, we are testing an asymptomatic population—we thus want to minimize
false negatives. This is because we wouldn’t want to tell someone that they are disease-free if
they’re really not. Screening programs therefore utilize tests with high sensitivities.

Positive and Negative Predictive Values

The positive predictive value is the probability that you actually have the disease given that you
tested positive (look carefully, and be sure you understand how this is different than sensitivity):

PPV = P(D+|T+) =

The negative predictive value is the probability that you do not have the disease given that you
tested negative:
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NPV = P(D-|T-) =

Again, these quantities are proportions and are usually expressed as percentages.

PPV and NPV are used to interpret test results once those results are known. Unlike sensitivity
and specificity, however, PPV and NPV do change as the prevalence of disease in the sample
changes—it is thus important to know something about the prevalence of disease in the target
population to which an individual belongs before you can interpret their test results. For example,
if a patient tests positive for tuberculosis (TB) and you know that the prevalence of TB in the
population from which the patient comes is 10%, and the PPV given a 10% prevalence is 52.6%,
then the interpretation of that test result is: there is a 52.6% chance that this patient has TB (there
is thus a 47.4% chance that they do not have TB and the result was a false positive).

In general, PPV will decrease and NPV will increase as prevalence decreases. This makes intuitive
sense: as a condition becomes more rare, then guessing that the patient does not have the disease
becomes more and more likely to be correct. Extremely low PPV secondary to low prevalence
was the rationale behind the 2009 recommendation by the US Preventive Services Task Force
(USPSTF) that women in their 40s stop being screened for breast cancer unless they are extremely
high-risk.iv The prevalence of disease among women in their 40s is very low (0.98%)v and the PPV
in this population is thus well under 1%—this means that greater than 99% of women who are sent
for follow-up testing (breast biopsy, usually) are false positives and thus undergo this expensive,
invasive follow-up (with its corresponding emotional stress) unnecessarily. For women with a
strong family history and/or who are known to be BRCA-1 or BRCA-2 carriers, mammography
for 40-year-olds is still warranted—because these women come from an underlying population in
which the prevalence (and thus the PPV) is much higher.

Example

Say a new test for anemia is developed that does not require a finger stick to obtain blood (no one
likes needles!)—perhaps using a scanner that can detect hemoglobin levels through the thin skin
on the underside of a wrist. The following 2 × 2 table is published:
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Table 11.2

D+ D- Total

T+ 101 15 116

T- 18 866 884

Total 119 881 1000

In this case, the test results (either T+ or T-) would come from the wrist scanner, and the disease
results (D+ or D-) would come from the usual method of diagnosing anemia, which requires a
blood draw.

Sample Calculations

Using the data from the above table, we can calculate the four test characteristics.

Sensitivity = = 84.9%

Specificity = = 98.3%

Positive Predictive Value = = 87.0%

Negative Predictive Value = = 98.0%

We can also calculate the prevalence of anemia in this sample.

Prevalence = = 11.9%

Let’s now say that there is a patient who took the new test and tested positive. However, we know
that the patient is from a population with a lower prevalence of anemia than 11.9%—adolescent
males, for example, in whom the prevalence is around 1%.vi In this case, the above PPV no longer
applies. However, since we know the Sensitivity and Specificity, we can create a new 2 × 2 table,
from which we can calculate a new PPV for a lower prevalence population. We begin by deciding
(arbitrarily) that we will again have 1,000 people in the table:
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Table 11.3

D+ D- total

T+

T-

total 1000

If the prevalence is 1%, then 10 people would be expected to have the disease:

Table 11.4

D+ D- total

T+

T-

total 10 990 1000

Since the sensitivity is 84.9%, and sensitivity is a fixed test characteristic, we can solve for true
positives as follows:

Sn =

0.849 = TP/10

TP = 8.49

We then subtract to get false negatives:

Table 11.5

D+ D- Total

T+ 8.49

T- 1.51

Total 10 990 1,000

We can do a similar calculation with the known specificity of 98.3%:
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(0.983)(990) = TN = 973.17

We can then fill in the nondiseased column:

Table 11.6

D+ D- Total

T+ 8.49 16.83 25.32

T- 1.51 973.17 974.68

Total 10 990 1,000

Now we can calculate our new PPV:

PPV = 8.49/25.32 = 33.5%

There is thus only a 33.5% chance that our male adolescent actually has anemia based on a positive
skin scan test. (We would follow up with a blood draw to confirm—had he tested negative, the new
NPV would have been 99.9%—no blood draw required!)
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Summary

Screening and diagnostic testing are similar procedures; the difference depends on context
(whether the tested person is symptomatic or not). Accuracy of such tests is quantified by
sensitivity and specificity (used ahead of time to pick the correct test), and positive and negative
predictive values (used after the test results are known, to interpret them). One must know the
prevalence of a disease in the target population in order to use PPV and NPV.
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Appendix 1: How to Read an
Epidemiologic Study

Key Takeaways

A standard epidemiology study (not counting the abstract—more on this later) has 4 parts:

• Introduction
• Methods
• Results
• Discussion

Usually these are labelled, but not always. Sometimes they have different labels (eg, “background” instead of
“introduction.”) Even without labels, epidemiology papers are almost always organized in this order. Details
about each section are discussed below.

Introduction

The INTRODUCTION usually consists of three things:

• What we already know about a topic

◦ A very select summary of what we know! It is important to remember that intros are
NOT exhaustive literature reviews. Furthermore, what things are included is entirely at
the authors’ discretion (with some input from peer reviewers and editors), which means
that you do see the occasional biased/incomplete introduction.

• What we don’t know about the topic (ie, what is the gap in the literature?)
• What this study will do to address that gap

◦ Usually concluding with “our study question was…” or “our objective here was…”

The introduction is where you will find answers to questions like “What is the public health or
clinical problem this study is trying to address?” and “What was their research question?”
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Methods

The METHODS is just that—a description of the methods used for this study. Ideally, the methods
section will describe:

• How they got their sample from the target population/what dataset was used

◦ Including inclusion/exclusion criteria, with rationales as appropriate
• What is the study design (including design-specific relevant details, such as how participants

were randomized, if it’s a randomized controlled trial)

◦ Occasionally, if a study has been done using a well-known dataset (e.g., the NHANES
data—see Chapter 3), the methods section will just direct the reader to other
publications in which these methods are described in detail, rather than re-printing all
of the information

• What was the exposure, how and when was it measured, and how was it operationalized in
the analysis

◦ ie, did they ask people their ages, but then dichotomize into “old” (>65) vs. “young” (65
and younger)?

• What was the outcome, how and when was it measured, and how was it operationalized in
the analysis

◦ ie, what was the case definition used for diagnosis? Were cases identified via clinics, or
self-report, or some other method?

• What confounders and/or effect modifiers were included, how they were chosen, how they
were measured, and how they were operationalized in the analysis

◦ Collectively these are referred to as “covariables”
◦ Any variables listed under “adjusted for” or “included in the model” are confounders
◦ Any variables listed as “interactions” or “stratified by” are effect modifiers

• The statistical methods used

The methods section also should include a sentence about ethics/IRB approval, and informed
consent, if applicable.

As a beginning epidemiology student, do not be concerned if you do not understand everything
in the methods section! This is particularly true if the study included laboratory assays (e.g. to
measure blood lead levels), but also pertains to the statistical methods. Papers must include
enough detail in the methods section so that other scientists can evaluate, and potentially
replicate, the work—which means they are written for other epidemiologists who are publishing
papers, all of whom potentially have many years’ worth of training in relevant methods.

Your task as a first-time epidemiology student (or as an end-user of epidemiologic research who
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has some – but not a lot of – training in the field) is to read the methods carefully enough to spot
any potential sources of bias, given your level of understanding. For instance, after reading this
book, my hope is that you could spot egregious selection bias by reading the authors’ methods
and thinking through “who did they get, who did they miss?”. However, I would not expect that
you would be able to spot a bias introduced because the authors violated one of the assumptions
of the statistical model that they used. Sometimes I read papers myself where I don’t quite follow
the methods, particularly for laboratory-based measurements. In those cases, I just trust the
peer review process—several pairs of eyes were on any given study before mine, so probably
the methods are kosher. If it seems like maybe there’s a problem, I ask one of my laboratory (or
statistics, or clinical, depending on what my question is) colleagues about it.

Bottom line: read the methods carefully, but if there are parts you don’t quite follow, don’t worry
about it unless you are going to cite that work yourself. In that case, ask around and find someone
who can help you interpret the methods.

Results

The RESULTS section contains…results. What did they find? This section is usually very dense
in terms of numbers. There will be odds ratios, risk ratios, confidence intervals, p-values, etc.
Usually the results section begins with a discussion of the sample that was in the study, and
this often further includes a table of demographics and relevant risk factors (usually “Table 1”).
This table is a good place to get a feel for who was in the study (and therefore who was not).
Then usually the authors will discuss the MAIN results: what did they find pertaining to their
primary research question? They will not say what the results mean in this section (that’s for the
“discussion,” below)—this section just presents the numbers. Expect to go back and forth between
the text and the tables and the figures several times—most journals expressly ask authors not to
duplicate results (meaning, if the results are presented in a table, don’t repeat them in the text).
Thus, to understand all of the results yourself, you will need to read both the text and the tables/
figures. The last few paragraphs of the results section are used to present subgroup analyses, or
bias/sensitivity analyses.

As you read results sections, think about what you read in the methods section. Do you believe
these results, given the methods used?
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Discussion

The DISCUSSION section is the authors’ opinions about what the results mean. It usually begins
with a summary of the main findings, and then compares these findings to other published
findings on the same or similar topics. It should include a limitations (or strengths and limitations)
sub-section, in which the authors provide a very frank picture of what limitations their study
had (where there might have been bias, etc). If, when reading the methods and results sections,
you thought of a potential bias that is NOT discussed here…pause. Perhaps this study is not the
best source, then? All limitations should be acknowledged. (Corollary: no study is perfect! All
have limitations. We can try to minimize, but need to ‘fess up to the ones that remain.) The
discussion section usually concludes with some kind of recommendation, either for policy, or
further research. Again, this is the authors’ opinion. Indeed, you are welcome to disagree entirely
with any or all of a given discussion section—discussion sections are opinion, not fact.

Abstract

Finally, there is the ABSTRACT. Usually found at the beginning of the paper, often in its own
separate box—this is a brief summary of the entire thing. Sometimes these same subheadings will
be in the abstract, other times not. WARNING: You cannot understand a paper just by reading
the abstract. Often only one or two main results are presented in the abstract, and the methods
are quite sparse, as abstracts are limited usually to a few hundred words. Never cite a paper if all
you have read is the abstract. This will come back to haunt you.

A few other details

Below are a few more points for if/when you are looking for papers yourself. Consider these things
as you determine whether it’s worth reading and/or citing a paper that you have found.

• Just under the paper’s title is a list of the authors, their affiliations, and (usually) their
credentials. Are these the kinds of people who need to be on this study? For instance, if a
study on appropriate treatment for congestive heart failure does not include a cardiologist as
an author, maybe that’s a problem. If a study includes fancy statistical methods beyond basic
logistic or linear regression, but the author list includes only clinicians, and no one with
specialized statistical training, maybe that’s a problem.

• Somewhere, usually on either the first or last page, or sometimes between the conclusion
and the reference list, is a note about funding and other conflicts of interest. These are often
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illuminating. For instance, I know of a study casting doubt on the benefits of breastfeeding
that was funded by the International Formula Council.[i]

• Many journals will list dates—the date the article was submitted, the date it was received in
revised form (meaning, it was received, sent out for review, the reviews were sent back to the
authors, who then made the changes), and the date it was accepted. If the initial submission
date and the acceptance date are not at least six weeks (and more realistically six months)
apart, then it’s possible that the peer review process was circumvented in some way. This
happens. Sad but true.

References

i. Cope MB, Allison DB. Critical review of the World Health Organization’s (WHO) 2007 report
on “evidence of the long-term effects of breastfeeding: systematic reviews and meta-analysis”
with respect to obesity. Obes Rev Off J Int Assoc Study Obes. 2008;9(6):594-605. doi:10.1111/
j.1467-789X.2008.00504.x (↵ Return)
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Appendix 2: Glossary

2x2 Table

A convenient way for epidemiologists to organize data, from which one calculates either
measures of association or test characteristics.

Absolute measure of association

A measure of association calculated fundamentally by subtraction. See also risk difference.

Absolute risk

See Incidence.

Attributable fraction

A misleading measure of association that supposedly quantifies the proportion of cases of
disease that can be “attributed” to a particular exposure. However, since every case of disease
has more than one cause, the attributable fractions for all relevant exposures will sum to well
over 100%, making the attributable fraction uninterpretable.

Baseline

The start of a cohort study or randomized controlled trial.

Bias

Systematic error. Selection bias stems from poor sampling (your sample is not representative
of the target population), poor response rate from those invited to be in a study, treating cases
and controls or exposed/unexposed differently, and/or unequal loss to follow up between
groups. To assess selection bias, ask yourself "who did they get, and who did they miss?"--and
then also ask yourself "does it matter"? Sometimes it does, other times, maybe it doesn't.

Misclassification bias means that something (either the exposure, the outcome, a confounder,
or all three) were measured improperly. Examples include people not being able to tell you
something, people not being willing to tell you something, and an objective measure that is
somehow systematically wrong (eg always off in the same direction, like a blood pressure cuff
that is not zeroed correctly). Recall bias, social desirability bias, interviewer bias--these are
all examples of misclassification bias. The end result of all of them is that people are put into
the wrong box in a 2x2 table. If the misclassification is equally distributed between the groups
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(eg, both exposed and unexposed have equal chance of being put in the wrong box), it's non-
differential misclassification. Otherwise, it's differential misclassification.

Case-control study

An observational study that begins by selecting cases (people with the disease) from the target
population. One then selects controls (people without the disease)–importantly, the controls
must come from the same target population as cases (so, if they suddenly developed the
disease, they’d be a case). Also, selection of both cases and controls is done without regard to
exposure status. After selecting both cases and controls, one then determines their previous
exposure(s). This is a retrospective study design, and as such, more prone to things like recall
bias than prospective designs. Case-control studies are necessary if the disease is rare and/
or if the disease has a long induction period. The only appropriate measure of association is
the odds ratio, because one cannot measure incidence in a case-control study.

Censored time

Time during which a given person is not contributing person-time at risk to a cohort study or
randomized controlled trial. Left censoring happens before the person begins to contribute
person-time at risk (because they are not yet enrolled in the study, even though the study has
started), and right censoring happens after a person stops contributing person-time at risk
(because they experienced the event of interest, a competing risk, or were lost to follow-up).

Cohort study

An observational design. Usually prospective, in which case one selects a sample of at-risk
(non-diseased) people from the target population, assesses their exposure status, and then
follows them over time looking for incident cases of disease. Because we
measure incidence, the usual measure of association is either the risk ratio or the rate ratio,
though occasionally one will see odds ratios reported instead. If the exposure under study
is common (>10%), one can just select a sample from the target population; however, if the
exposure is rare, then exposed persons are sampled deliberately. (Cohort studies are the only
design available for rare exposures.) This whole thing can be done in a retrospective manner
if one has access to existing records (employment or medical records, usually) from which
one can go back and "create" the cohort of at-risk folks, measure their exposure status at that
time, and then "follow" them and note who became diseased.

Comorbidity/comorbid condition

If a person has more than one disease at a time, all such diseases for that person are known as
comorbidities or comorbid conditions.
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Competing risks

In a cohort study or randomized controlled trial, competing risks are defined as “everything
else that might kill someone or otherwise make them no longer at risk of the outcome under
study.” So, if we are studying ovarian cancer, then possible competing risks are fatal motor
vehicle accidents, fatal heart attacks, etc., as well as oophorectomy (surgical removal of the
ovaries). If someone experiences a competing risk, they no longer contribute person-time at
risk.

Confidence interval

A way of quantifying random error. The correct interpretation of a confidence interval is:
if you repeated the study 100 times (go back to your target population, get a new sample,
measure everything, do the analysis), then 95 times out of 100 the confidence interval you
calculate as part of this process will include the true value, assuming the study contains no
bias. Here, the true value is the one that you would get if you were able to enroll everyone from
the population into your study--this is almost never actually observable, since populations are
usually too large to have everyone included in a sample. Corollary: If your population is small
enough that you can have everyone in your study, then calculating a confidence interval is
moot.

Confounding

A systematic error in a study (some people call it a bias; I prefer not to) that is caused by a
third variable interfering in the exposure-disease relationship.

Count

A measure of disease frequency used in lieu of prevalence when the disease is extremely rare.

Cross-sectional study

An observational study design in which one takes a sample from the target population, assesses
their exposure and disease status all at that one time. One is capturing prevalent cases of
disease; thus the odds ratio is the correct measure of association. Cross-sectional studies are
good because they are quick and cheap; however, one is faced with the chicken-egg problem
of not knowing whether the exposure came before the disease.

Cumulative incidence

See Incidence Proportion.

160 | Marit L. Bovbjerg



Descriptive epidemiology

A summary of what is known about a particular condition, including data on incidence,
prevalence, and known risk factors.

Determinants

Things that cause or prevent disease. Also called “causes.”

Diagnostic testing

Applying a clinical test to a person who has presented with symptoms, to aid in determining
what condition the person has, so that they can be correctly treated.

Differential misclassification bias

Misclassification that occurs in one study group more than another. Adversely affects internal
validity.

Disproportionately distributed

Refers to a situation wherein exposed individuals have either more or less of the disease of
interest (or diseased individuals have either more or less of the exposure of interest) than
unexposed individuals.

Ecologic fallacy

A logical error that stems from applying group-level characteristics to individuals.

Effect modification

Refers to the scenario when the relationship between an exposure and an outcome varies on
the basis of a third variable. For instance, perhaps yoga prevents ACL injuries in females but
not males. Sex in that scenario is the effect modifier. Effect modification is not the same as
confounding.

Endemic

The amount of a disease usually found in a given area. Known through surveillance.

Epidemic

The occurrence, in a community or region, of cases of an illness (or specific health-related
behaviour or other health-related events) clearly in excess of normal expectancy.
Epidemiologists and other public health professionals keep track of what levels are "expected"
through surveillance.
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Epidemiology

The study of the distribution and determinants of disease or other health-related events in
human populations, and the application of that study to prevent and control health problems.

Etiology

The sum of what is known about how a disease process develops within an individual,
including known determinants.

External validity

The extent to which we can apply a study’s results to other people in the target
population. Synonymous with generalizability. External validity is irrelevant if a study lacks
internal validity.

Generalizability

See external validity.

Gold standard

The best that is currently available. Not necessarily the most feasible.

Incidence

A measure of disease frequency that quantifies occurrence of new disease. There are two types,
incidence proportion and incidence rate. Both of these have “number of new cases” as the
numerator; both can be referred to as just “incidence.” Both must include time in the units,
either actual time or person-time. Also called absolute risk.

Incidence density

See incidence rate.

Incidence proportion

A measure of disease frequency. The numerator is "number of new case" and the denominator
is "the number of people who were at risk at the start of follow-up." Sometimes if the
denominator is unknown, you can substitute the population at the mid-point of follow-up (an
example would be the incidence of ovarian cancer in Oregon. We would know how many new
cases popped up in a given year, via cancer surveillance systems. To estimate the incidence
proportion, we could divide by the number of women living in Oregon on July 1 of that year.
This of course is only an estimate of the true incidence proportion, as we don't know exactly
how many women lived here, nor do we know which of them might not have been at risk of
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ovarian cancer.) The units for incidence proportion are "per unit time." You can adjust this if
necessary (ie if you follow people for 1 month, you can multiply by 12 to estimate the incidence
for 1 year). You can (read: should) also adjust the final answer so that it looks "nice." For
instance, 13.6/100,000 in 1 year is easier to comprehend than 0.000136 in 1 year. Also called
risk and cumulative incidence.

Incidence rate

A measure of disease frequency. The numerator is "number of new cases." The denominator
is "sum of the person-time at risk." The units for incidence rate are "per person-[time unit]",
usually but not always person-years. You can (and should) adjust the final answer so that it
looks "nice." For instance, instead of 3.75/297 person-years, write 12.6 per 1000 person-years.
Also called incidence density.

Incident cases

All new cases of a particular disease, arising over some period of time.

Incubation period

The amount of time between an exposure and the onset of symptoms. Roughly, the induction
period plus the latent period.

Induction period

The amount of time between an exposure and the biological onset of disease. Depending
on the exposure/disease pair in question, can vary from minutes for some potent toxins to
decades for many chronic diseases.

Internal validity

The extent to which a study’s methods are sufficiently correct that we can believe the findings
as they apply that that study sample.

Latent period

The amount of time between biological onset of disease and diagnosis. Depending on the
disease, can be highly-variable in length, from hours to years. Duration of the latent period
also varies depending on access to healthcare.

Measure of association

Quantifies the degree to which a given exposure and outcome are related statistically. Implies
nothing about whether the association is causal. Examples of measures of association are odds
ratios, risk ratios, rate ratios, risk differences, etc.
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Measures of disease frequency

Quantifies how much disease is in a population. See count, incidence, and prevalence.

Misclassification bias

Systematic error that results from something (either the exposure, the outcome, a
confounder, or all three) having been measured incorrectly. Examples include people not
being able to tell you something, people not being willing to tell you something, and an
objective measure that is somehow systematically wrong (eg, always off in the same direction,
like a blood pressure cuff that is not zeroed correctly). Recall bias, social desirability bias,
interviewer bias-–these are all examples of misclassification bias. The end result of all of
them is that people are put into the wrong box in a 2×2 table. If the misclassification is
equally distributed between the groups (eg, both exposed and unexposed have equal chance
of being put in the wrong box), it’s non-differential misclassification. Otherwise, it’s differential
misclassification.

Missing at random

All studies have missing data, and many statistical analyses assume that they are missing at
random, meaning any given participant is as likely as any other to have missing data. This
assumption is almost never met; the kinds of participants who have missing data are usually
fundamentally different than those who have more complete data.

Morbidity

Any adverse health outcome short of death.

Mortality

Death.

Negative predictive value (NPV)

One of four test characteristics used to describe the accuracy of screening/diagnostic tests.
NPV is the probability that one does not have the disease, given that one tested negative.
Calculated as D/(C+D) in standard 2×2 notation (TN/(FN+TN)). Varies as disease prevalence
varies.

Non-differential misclassification

Misclassification that occurs equally among all groups.
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Null hypothesis

Used in statistical significance testing. The null hypothesis is always that there is not
difference between the two groups under study.

Null value

The value taken by a measure of association if the exposure and disease are not related. Is equal
to 1.0 for relative measures of association, and equal to 0.0 for absolute measures of association.

Observational studies

All study designs in which participants choose their own exposure groups. Includes cohorts,
case-control, cross-sectional. Basically, includes all designs other than randomized controlled
trial.

Odds ratio

A measure of association, used in study designs that deal with prevalent cases of disease (case-
control, cross-sectional). Calculated as AD/BC, from a standard 2x2 table. Abbreviated OR.

P-value

A way of quantifying random error. The correct interpretation of a p-value is: the probability
that, if you repeated the study (go back to the target population, draw a new sample, measure
everything, do the analysis), you would find a result at least as extreme, assuming the null
hypothesis is true. If it’s actually true that there’s no difference between the groups, but your
study found that there were 15% more smokers in group A with a p-value of 0.06, then that
means that there's a 6% chance that, if you repeated the study, you'd again find 15% (or a
bigger number) more smokers in one of the groups. In public health and clinical research, we
usually use a cut-off of p < 0.05 to mean "statistically significant"--so, we are allowing a type
I error rate of 5%. Thus, 5% of the time we'll "find" something, even though really there isn't a
difference (ie, even though really the null hypothesis is true). The other 95% of the time, we
are correctly rejecting the null hypothesis and concluding that there is a difference between
the groups.

Period prevalence

Prevalence calculated over a longer period of time. Used for short-duration infectious diseases
or injuries.

Person-time at risk (PTAR)

For participants enrolled in a cohort study or randomized controlled trial, this is the amount of
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time each person spent at risk of the disease or health outcome. A person stops accumulating
person-time at risk (usually shortened to just "person-time") when: (1) they are lost to follow-
up; (2) they die (or otherwise not become a risk) of something else other than the disease
under study (ie they die of a competing risk); (3) they experience the disease or health outcome
under study (now they are an incident case); or (4) the study ends. Each person enrolled in
such a study could accumulate a different amount of person-time at risk.

Point estimate

The measure of association that is calculated in a study. Typically presented with a
corresponding 95% confidence interval.

Point prevalence

Prevalence calculated at a specific moment in time.

Population

A group of people who share a common characteristic.

Population at risk

All individuals in a population who (1) have not yet experienced the disease or health outcome
under study; and (2) are capable of experiencing that disease or health outcome. In other
words, the population at risk excludes all prevalent cases, as well as those who for some reason
could never experience the outcome (eg, biological males cannot have endometrial cancer). It
is not always possible to correctly identify those in the latter group, depending on the disease
or health outcome in question. For instance, technically, if we were studying pregnancy,
we would need to exclude all women who are either themselves infertile or who are in a
monogamous relationship with a man who is infertile. However, in practice it is difficult to
identify infertile couples (those who have never tried to get pregnant won't know they're
infertile); in such a scenario one would just acknowledge the limitation (that the calculation of
population at risk was imperfect, and why).

Positive predictive value (PPV)

One of four test characteristics used to describe the accuracy of screening/diagnostic tests.
PPV is the probability that one has the disease, given that one tested positive. Calculated as
A/(A+B) or TP/(TP+FP) in standard 2×2 notation. Varies as disease prevalence varies.

Power

The probability that your study will find something that is there. Power = 1 – β; beta is the type
II error rate. Small studies, or studies of rare events, are typically under-powered.
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Prevalence

A measure of disease frequency that quantifies existing cases. The numerator is "all cases" and
the denominator is "the number of people in the population." Usually expressed as a percent
unless the prevalence is quite low, in which case write it as "per 1000" or "per 10,000" or
similar. There are no units for prevalence, though it is understood that the number refers to a
particular point in time.

Prognosis

The likely course of a disease; how well someone with the disease will fare, given current
treatment regimens.

Prophylaxis

Treatment undertaken in an attempt to prevent a poor outcome. It is designed specifically
to prevent, not to treat. For instance, in chapter 9, there is discussion of “risk-reducing
mastectomy”—prophylactic removal of breasts in women at very high risk of breast cancer.
The mastectomy occurs prior to the cancer, in an attempt to prevent the cancer from
occurring. As another example, health care workers known to have been exposed to HIV (e.g.,
from an accidental needle stick) are offered prophylactic anti-retroviral drugs, in an attempt
to prevent their bodies from seroconverting/becoming infected with HIV.

Prospective cohort study

See cohort study.

Public health surveillance

See surveillance.

Publication bias

Bias in the state of the literature on a particular topic that results from journals preferentially
publishing papers with exciting results, rather than those showing no effect.

Random error

Inherent in all measurements. “Noise” in the data. Will always be present, but the amount
depends on how precise your measurement instruments are. For instance, bathroom scales
usually have 0.5 – 1 pound of random error; physics laboratories often contain scales that
have only a few micrograms of random error (those are more expensive, and can only weigh
small quantities). One can reduce the amount by which random error affects study results by
increasing the sample size. This does not eliminate the random error, but rather better allows
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the researcher to see the data within the noise. Corollary: increasing the sample size will
decrease the p-value, and narrow the confidence interval, since these are ways of quantifying
random error.

Randomized controlled trial (RCT)

An intervention (experimental) study. Just like a prospective cohort except that the
investigator tells people randomly whether they will be exposed or not. So, grab an at-risk
(non-diseased) sample from the target population, randomly assign half of them to be exposed
and half to be non-exposed, then follow looking for incident cases of disease. The correct
measure of association is the risk ratio or rate ratio. If done with a large enough sample, RCTs
will be free from confounders (this is their major strength), because all potential co-variables
will be equally distributed between the two groups (thus making it so that no co-variables are
associated with the exposure, a necessary criterion for a confounder). Note that the ‘random’
part is in assigning the exposure, NOT in getting a sample (it does not need to be a ‘random
sample’). RCTs are often not do-able because of ethical concerns.

Rate ratio

A measure of association calculated for studies that observe incident cases of disease
(cohorts or RCTs). Calculated as the incidence proportion in the exposed over the incidence
proportion in the unexposed, or A/(A+B) / C/(C+D), from a standard 2x2 table. Note that 2x2
tables for cohorts and RCTs show the results at the end of the study--by definition, at the
beginning, no one was diseased. See also rate ratio and relative risk. Abbreviated RR.

Recall bias

A subset of misclassification bias that specifically results from people being unable to
accurately recall past exposures.

Relative measure of association

A measure of association calculated fundamentally by division. See also risk ratio, rate
ratio, relative risk, odds ratio.

Relative risk

Abbreviated RR. Can refer either to risk ratio or rate ratio--because of this uncertainty, this
term is not used in this book.

Retrospective cohort study

See cohort study.
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Risk

See Incidence Proportion.

Risk difference

A measure of association calculated for studies that observe incident cases of disease
(cohorts or RCTs). Calculated as the incidence proportion in the exposed minus the incidence
proportion in the unexposed.

Risk factors

Variables known to be associated with a disease. May or may not be causally-related.

Risk ratio

A measure of association calculated for studies that observe incident cases of disease
(cohorts or RCTs). Calculated as the incidence proportion in the exposed over the incidence
proportion in the unexposed, or A/(A+B) / C/(C+D), from a standard 2x2 table. Note that 2x2
tables for cohorts and RCTs show the results at the end of the study--by definition, at the
beginning, no one was diseased. See also rate ratio and relative risk. Abbreviated RR.

Sample

The group actually enrolled in a study. Hopefully the sample is sufficiently similar to the target
population that we can say something about the target population, based on results from
our sample. In epidemiology we often don’t worry about getting a “random sample”–that’s
necessary if we’re asking about opinions or health behaviours or other things that might vary
widely by demographics, but not if we’re measuring disease etiology or biology or something
else that will likely NOT vary widely by demographics (for instance, the mechanism for
developing insulin resistance is likely the same in all humans). Nonetheless, if the sample
is different enough than the target population, that is a form of selection bias, and can be
detrimental in terms of external validity.

Screening

Applying a clinical test to asymptomatic individuals, on the theory that finding (and treating)
the disease earlier will lead to better outcomes.

Selection bias

A type of systematic error resulting from who chooses/is chosen to be in a study and/or who
drops out of a study. Can affect either internal validity or external validity.
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Sensitivity

One of four test characteristics used to describe the accuracy of screening/diagnostic tests.
Sensitivity is the probability that one tests positive, given that one has the disease. Calculated
as A/(A+C) or TP/(TP+FN) in standard 2×2 notation. Does not vary as disease prevalence
varies.

Specificity

One of four test characteristics used to describe the accuracy of screening/diagnostic tests.
Specificity is the probability that one tests negative, given that one does not have the disease.
Calculated as D/(B+D) or TN/(TN+FP) in standard 2×2 notation. Does not vary as disease
prevalence varies.

Statistical significance

A somewhat-arbitrary method for determining whether or not to believe the results of a
study. In clinical and epidemiologic research, statistical significance is typically set at p < 0.05,
meaning a type I error rate of <5%. As with all statistical methods, pertains to random error
only; a study can be statistically significant but not believable, eg, if there is likelihood of
substantial bias. A study can also be statistically significant (eg, p was < 0.05) but not clinically
significant (eg, if the different in systolic blood pressure between the two groups was 2 mm
Hg—with a large enough sample this would be statistically significant, but it matters not at all
clinically).

Surveillance

The ongoing, systematic collection, analysis, and interpretation of health data, essential to the
planning, implementation, and evaluation of public health practice, closely integrated with the
timely dissemination to those who need to know. Surveillance both (1) provides information
for descriptive epidemiology (person, place, time), and (2) allows us to know what "normal" is,
so that potential epidemics are identified early. Also called public health surveillance.

Target population

The group about which we want to be able to say something. One only very rarely is able
to enroll the entire target population into a study (since it would be millions and millions of
people), and so instead we draw a sample, and do the study with them. In epidemiology we
often don't worry about getting a "random sample"--that's necessary if we're asking about
opinions or health behaviors or other things that might vary widely by demographics, but not
if we're measuring disease etiology or biology or something else that will likely not vary widely
by demographics (for instance, the mechanism for developing insulin resistance is the same
in all humans).
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Test characteristics

Four numerical summaries that describe different aspects of screening/diagnostic test
accuracy. Two of the test characteristics (sensitivity and specificity) are “fixed,” meaning their
values do not change as disease prevalence changes. The other two (positive predictive value
and negative predictive value) do change as disease prevalence changes.

Type I error

The probability that a study “finds” something that isn’t there. Typically represented by α, and
closely related to p-values. Usually set to 0.05 for clinical and epidemiologic studies.

Type II error

The probability that a study did not find something that was there. Typically represented by β,
and closely related to power. Ideally will be above 90% for clinical and epidemiologic studies,
though in practice this often does not happen.
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