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Appendix A:  Mathematical Preliminaries


  
  Some students with limited mathematical background may benefit from a brief introduction to some common mathematical notation frequently used in this text.

  An efficient way to write a sum of many variables is with the sigma notation [image: \sum]. Consider adding up the values [image: x_{1} + x_{2} + x_{3} + x_{4} + x_{5}]. This can be compactly represented as:

   

  
    [image: \sum_{k=1}^{5} x_{k} = x_{1} + x_{2} + x_{3} + x_{4} + x_{5}]
  

   

  Similarly, if we want to represent a product of many variables, we can use the following notation:

   

  
    [image: \prod_{k=1}^{n} x_k = x_{1} \times x_{2} \times ... \times x_{n}]
  

   

  An example of such a product function is “factorial”, [image: n!]. This quantity is the produce of the integers from [image: 1] to [image: n], and represents the number of possible arrangements of [image: n] distinct objects.

   

  
    [image: {n! = \prod_{k=1}^{n} k}]
  

   

  Logarithms are an important function to know in bioinformatics as they are commonly used in scoring systems. Logarithms are powerful because they have the following useful algebraic property (among others):

   

  
    [image: \log( A B ) = \log(A) + \log(B)]
  

   

  We can combine the properties of our sums and products and logs, with the following equation:

   

  
    [image: \log \left( \prod_{k=1}^{n} x_{k} \right) = \sum_{k=1}^{n} \log \left( x_{k} \right) .]
  

   

  Another very useful mathematical construct is the Kronecker Delta function, and can be used for counting. It is defined as follows:

   

  
    [image: \begin{aligned} \delta_{a,b} = \begin{cases} 1 & \mbox{if } a = b\\ 0 & \mbox{if } a \ne b\\ \end{cases} \end{aligned} \label{indicatorFunction}]
  

  




  
  






Chapter 2: Sequence Motifs



  
  2.1 Introduction to Motifs

  A biological motif, broadly speaking, is a pattern found occurring in a set of biological sequences, such as in DNA or protein sequences. A motif could be an exact sequence, such as [image: \texttt{TGACGTCA}], or it could be a degenerate consensus sequence, allowing for ambiguous characters, such as [image: \texttt{R}] for [image: \texttt{A}] or [image: \texttt{G}]. Motifs can also be described by a probabilistic model, such as a position-specific scoring matrix (PSSM) or weight matrix.

  2.2 String Matching

  Frequently we want to search for an exact string or pattern within a larger sequence. For example, when using a restriction enzyme to cut a larger sequence at sequence-specific sites that match a particular pattern, we would like know where this pattern occurs in the larger sequence. This task can be called string matching. There are numerous algorithms that have been developed to make this task more efficient, such as the Knuth-Morris-Pratt algorithm [9]and the Burrows-Wheeler transform [10]. These approaches are beyond the scope of this course, but definitely worth mentioning. Let’s examine how to utilize the Biopython function [image: \texttt{nt_search}] as part of the [image: \texttt{SeqUtils}] module. We can use the function as follows to search for the short pattern [image: \texttt{ACG}].

 >>> from Bio.Seq import Seq
 >>> from Bio import SeqUtils
 >>> pattern = Seq("ACG")
 >>> sequence = Seq("ATGCGCGACGGCGTGATCAGCTTATAGCCGTACGACTGCTGCAACGTGACTGAT")
 >>> results = SeqUtils.nt_search(str(sequence),pattern)
 >>> print(results)
 ['ACG', 7, 31, 43]
 

  You’ll note that the function takes in two arguments. The first is the sequence to search, but it is not a [image: \texttt{Seq}] object, but the basic python string. The python function “str()” converts the [image: \texttt{Seq}] object into a string. The second argument is the pattern or string that we are searching, but this argument clearly can be the [image: \texttt{Seq}] object, which it is in this example.

  Typically, we consider the DNA sequence that we are searching as double stranded, hence we want to search the forward strand and its reverse complement. In many cases for bioinformatics, such as searching an entire chromosome, it is easier to reverse complement the pattern rather that the sequence to search. In this example, this looks like

  
    
 >>> results_rc = SeqUtils.nt_search(str(sequence),pattern.reverse_complement())
 >>> print(results_rc)
 ['CGT', 11, 28, 44]
 
  

  

  In this example, we have searched the forward strand of the DNA sequence. Alternatively, a biologist might want to know where the patterns occurs with positions defined along the reverse complement of the sequence we are searching, or the reverse strand if the DNA is double stranded. In the example of the restriction enzyme, positions defined along the reverse complement of the larger sequence are more useful for predicting the length of the resulting fragments after treatment by the restriction enzyme. This is performed as follows.

 >>> results_rc = SeqUtils.nt_search(str(sequence.reverse_complement()),pattern)
 >>> print(results_rc)
 ['ACG', 7, 23, 40]
 
 The results are clearly different in terms of the positions, but they represent the same information. Because the larger sequence has a length of [image: 54]nt, we can see that we can transform between the two sets of position with the following equation:

  

  
    [image: \texttt{pos1} = \texttt{len(sequence)} - \texttt{pos2} - \texttt{len(pattern)}]
  

  (2.1)

  

  Where [image: \texttt{pos1}] is the position resulting from searching the reverse complement of the pattern over the forward strand of the sequence, and [image: \texttt{pos2}] is the position of searching the pattern over the reverse strand of the sequence.

  
    Exercise 6
  

  Find the number of occurrences and locations of [image: \texttt{ACTT}] within the following sequence:

 >sequence
 AGCGATCTAGCATACTTATACGCGCGCAGCTATCGATCACTTGTGCTAGTAAAGTGCGCGCCGCA
 TTAAAGTGCTAGCTAGCTACTTAGCTAGCTAGTCG
 

  2.3 Consensus Sequences

  A consensus sequence is a string of either nucleotide or protein characters along with “degenerate characters”, which specify a subset of characters. These degenerate characters can act as “wild cards”, such as [image: \texttt{N}], which can refer to any character, and are summarized in Table 2.1[11]. They can also specify a more specific subset, such as [image: \texttt{Y}], which specifies the pyrimidines [image: \texttt{C}] and [image: \texttt{T}].


  	Symbol 	Meaning 	Mnemonic 
 	R 	A, G 	puRine 
 	Y 	C, T 	pYrimidine 
 	W 	A, T 	Weak (weaker basepairs, fewer hydrogen bonds) 
 	S 	G, C 	Strong (stronger basepairs, more hydrogen bonds) 
 	K 	G or T 	Keto (both have a keto group) 
 	M 	A or C 	aMine (both have an amine group) 
 	B 	C, G, T 	not A (B comes after A) 
 	D 	A, G, T 	not C (D comes after C) 
 	A 	A, C, T 	not G (H comes after G) 
 	V 	A, C, G 	not T or U (V comes after T and U) 
 	N 	A, C, G, T 	aNy base 
  Table 2.1: IUPAC codes for nucleotides. In this table, everywhere that T applies, U applies as well. 

  We can combine the standard nucleotides and IUPAC codes to form a “consensus sequence” describing a motif. For example, “Downstream Promoter Element” (DPE) in Drosophila occurs near position +28 from the TSS of many genes, and has the consensus sequence [image: \texttt{RGWY}]V [12].

  2.3.1 Searcing Consensus Sequences with Biopython

  Biopython can also be used to search for a consensus sequence. The [image: \texttt{SeqUtils.nt_search()}] function is built to recognize patterns that include the wild-card characters presented in Table 2.1. If we are to search for the consensus sequence for the DPE, we would use something like this:

 >>> from Bio import SeqUtils
 >>> consensus = "RGWYV"
 >>> sequence = "CGTAGCTAGCTCAGAGCAGGGACACGTGCTAGCAACAGCGCT"
 >>> SeqUtils.nt_search(sequence,consensus)
 ['[AG]G[AT][CT][ACG]', 19]
 
 As before, the results contain the pattern searched and the positions of the instances, but the wild-chard characters of the pattern are now represented in a more traditional regular expression format, with sets of character within square brackets.

  2.4 Motif Finding

  Motif finding can be described as the process of discovering patterns within collections of sequences. In many cases, we don’t know what the pattern looks like, and this task is a “needle in a haystack” challenge, that involves sifting through many [image: K]-mers that aren’t part of the pattern, but occur frequently.

  2.4.1 Sequence Complexity

  Before we can start looking for motifs, we’ll need to consider things are frequently occur in biological sequence datasets, in particular DNA sequences. The most frequent[image: K]-mer in the human genome is “AAAAAAAA”. Such a sequence can be called a “low complexity” sequence, and along with simple repeats, are commonly occurring sequences that can confound motif finding and sequence alignment. Sequences like “ATATATATAT” are also frequently occurring in virtually any sequence dataset, and would be discovered by a motif search if not filtered out.
 The Wooton-Federhen complexity is a score that quantifies the complexity of a sequence [13]. Put simply, the WF complexity quantifies the number of possible sequences that could be generated using the same number of As [image: n_A],number of Cs [image: n_C], number of Gs [image: n_G]and number of Ts[image: n_T]. This can be computed from a multinomial coefficient, which finds itself in a log in the equation:

  

  
    [image: C_{WF} = \frac{1}{N} \log_D \left( \frac{N!}{n_A! n_C! n_G! n_T!} \right)]
  

  

  Note that the [image: \log()] is base [image: D=4], which is the size of the alphabet. A protein complexity score can be computed in an analogous fashion using base [image: 20] for amino acids. The factor of [image: \frac{1}{N}], where [image: N] is the number of characters in the sequence, is to ensure the value is between [image: 0] and [image: 1].

  There is a program called [image: \texttt{dust}] (R. Tatusov and D.J. Lipman unpublished) that can mask sequence of low complexity. It can be run by specifying the sequence and a threshold.

  
 $ dust sequences.fasta 30
 
 Here we are specifying a threshold of [image: 30], where the default is [image: 20]. Clearly, [image: \texttt{dust}] is specifying a complexity score different from WF complexity because it can be greater than [image: 1].

  2.4.2 Weight Matrices

  Weight matrices are the most general representation of a motif. It is a probabilistic model that we will see can be used to compute the log-likelihood of a string being an instance of the motif compared to a “background” model.

  
    Probabilistic Models of Motifs
  

  The concept of the Position Specific Scoring Matrix (PSSM), also known as a weight matrix, was developed by Stormo et al [14].
 Let’s begin by first by defining what isn’t a motif, using what is called a background model. A background model is a probabilistic representation of what a typical sequence looks like. The simplest background model is defined by single nucleotide probabilities [image: p_A, p_C, p_G, p_T]. Under such a model, the probability of a sequence is computed as the product of the individual frequencies in the sequence. This can be expressed as

  

  
    
    [image: \label{bgModel} P(x|R) = \prod_{i=1}^{|x|} p_{x[I]}]
  

  (2.2)

  

  Consider the nucleotide frequencies [image: \{p_b\}] for the human genome. These frequencies vary from position to position, and from chromosome to chromosome. Moreover, these frequencies will vary when comparing the promoters of genes and intergenic regions.
 Our motif can be described by a matrix of probabilities [image: f_{i,b}]. For a motif of length [image: K], we have a matrix like:

  

  
    [image: f = \left( \begin{array}{ccccc} f_{1A} & f_{1C} & f_{1G} & f_{1T} \\ f_{2A} & f_{2C} & f_{2G} & f_{2T} \\ f_{3A} & f_{3C} & f_{3G} & f_{3T} \\ \cdots & \cdots & \cdots & \cdots \\ f_{KA} & f_{KC} & f_{KG} & f_{KT} \\ \end{array} \right)]
  

  

  With this matrix, we can compute the probability (likelihood) of the sequence [image: x] given that it is an instance of the motif [image: M] by

  

  
    
    [image: \label{motifModel} P(x|M) = \prod_{i=1}^{K} f_{i, x[I]}]
  

  (2.3)

  
    Entropy and Information Content
  

  One helpful way of describing such a model is the Shannon entropy [15]. Shannon entropy is a measure of the uncertainty of a model, in the sense of how unpredictable a sequence generated from such a model would be. For the single-nucleotide background model, the entropy is

  

  
    [image: H = - \sum_{b=A}^T p_b \log_2 p_b]
  

  

  Note that while Shannon entropy is typically denoted H, this is not to be confused with enthalpy, which is also represented with H. The entropy is maximized when each nucleotide is equally likely, that is if [image: p_b = \frac{1}{4}] for all [image: b \in \{A,C,G,T\}]. It is intuitive that such a model would have the highest uncertainty, for example, compared to a model where [image: p_A = 0.9] and all other frequencies very low. Therefore, the maximum entropy of our background model is:

  

  
    [image: H_{max} = - \left( \frac{1}{4} \log_2 \left( \frac{1}{4} \right) + \frac{1}{4} \log_2 \left( \frac{1}{4} \right) + \frac{1}{4} \log_2 \left( \frac{1}{4} \right) + \frac{1}{4} \log_2 \left( \frac{1}{4} \right) \right)]
  

  

  Since [image: \log_2 \frac{1}{4} = -2], we have

  

  
    [image: H_{max} = 2]
  

  

  When the logarithms are base [image: 2], the units for such a quantity is called “bits”, as is with BLAST scores (See Section 3.3). When using natural logs, the units are “nits”. We can think of this value of [image: 2] bits as the information content associated with knowing a particular nucleotide. A bit of information can also be understood as the number of questions necessary to unambiguously determine an unknown nucleotide. You could ask, “Is it a purine?” If the answer is “no”, you could then ask is it[image: C]? The answer to the second question always guarantees, non-canonical nucleotides aside, the nucleotide’s identity.
 We can then compute the entropy at each position [image: i] of our motif’s probability matrix by the expression

  

  
    [image: H_i =-\sum_{b=A}^T f_{i,b} \log_2 f_{i,b}]
  

  

  The Information Content of a motif at each position can be defined as the reduction in entropy. That is, the the motif provides information inasmuch as it reduces the uncertainty compared to the background model. If the change in entropy is [image: \Delta H_i = H_i - H_{max}], then the information content at position[image: i] is

  

  
    [image: R_i =-Δ H= H_{max} - H_i]
  

  
    Exercise 7
  

  What is the entropy of a set of sequences with the nucleotide frequencies given by [image: p_A = p_T = 0.3] and [image: p_C = p_G = 0.2]?

  2.4.3 Relative Entropy

  Another useful concept for quantifying the information in a motif is the “relative entropy”, which is also known as the Kullback-Leibler divergence and as “information gain” [16]. For biological motifs, the expression for relative entropy at a particular position [image: i] is defined by the equation

  

  
    [image: {D(f_i||p) = \sum_{b=A}^{T} f_{ib} \log \left(\frac{f_{ib}}{p_b}\right)}]
  

  (2.4)

  

  This expression quantifies how different two discrete probability distributions are, in this case the background frequencies [image: p_b] and one position of our motifs’s probability matrix [image: f_{ib}]

  2.4.4 Building a Weight Matrix

  A weight matrix can be built or defined when one has a collection of sequences that are determined to be instances of the motif. It is essential that the motif’s instances be precisely aligned, usually without gaps, such that each position of each sequence corresponds to the same position of the motif. Consider a set of sequences [image: S = \{ x_1, x_2, x_3, ..., x_{N}\}]. We consider that each sequence [image: x_j] corresponds to an instances of our motif. For example, the following are instances of the binding site for the Drosophila transcription factor Giant:

  

  
    [image: \begin{array}{ccc} x_1 &=& TTTATGTGAT\\ x_2 &=& GTTACGCAAT \\ x_3 &=& TTAATATAAC \\ x_4 &=& GTTACATAAT\\ x_5 &=& CCGGCGTATT\\ \cdots & & \\ x_N &=& GTTACGTAAT\\ \end{array}]
  

  

  One useful contract is the Kronecker delta function. For this application, consider the expression [image: \delta_{a,b}], which returns [image: 1] when [image: a=b], and [image: 0] otherwise. For example, we can check if a particular nucleotide [image: i] in sequence [image: j] is equal to the nucleotide [image: b] with the statement [image: \delta_{b,x_j[i]}]. Under this representation, this function is defined as:

  

  
    [image: \begin{aligned} \delta_{b,x_j[i]} = \begin{cases} 1 & \mbox{if } x_j[i] = b\\ 0 & \mbox{if } x_j[i] \ne b\\ \end{cases} \end{aligned} \label{indicatorFunction}]
  

  

  (2.5)

  This function is useful for connecting sequences to equations. For example, we can generate a matrix of counts [image: C], such that the elements [image: C_{ib}] contain the number of occurrences of nucleotide [image: b] at position [image: i] in instances of our motif:

  

  
    [image: {C_{ib}=\sum_{j=1}^N\delta_{b,x_j[I]}}]
  

  

  This count matrix can then be normalized to represent the frequency of each nucleotide at each position by

  

  
    [image: {f_{ib}=\frac{C_{ib}}{\sum_{b=A}^T C_{ib}}}]
  

  

  Then, using equations 2.2and 2.3we can define a score as the log likelihood ratio of the probabilities of being an instance of the motif to being a random sequence. The expression of this score for a particular sequence [image: x_j] is

  

  
    [image: {S(x_j) = \log \left( \frac{P(x|M)}{P(x|R)} \right) = \sum_{i=1}^{K} \log \left( \frac{f_{i x_j[i]}}{p_{x_j[i]}} \right)}]
  

  

  As another example of the utility of the indicator matrix, this score can be represented as

  

  
    [image: {S(x_j) = \sum_{i=1}^{K} \delta_{b,x_j[i]} \log \left( \frac{f_{ib}}{p_{b}} \right) = \sum_{i=1}^{\ell} \sum_{b=A}^T \delta_{b,x_j[i]} W_{ib}}]
  

  

  In the second part of the equation, we have defined the weight matrix [image: W] with terms given by

  

  
    [image: {W_{ib} = \log \left( \frac{f_{ib}}{p_{b}} \right)}]
  

  

  So, for a particular sequence, [image: x_j = CGTAAGGT], this equation would pick out the appropriate terms necessary to compute the score

  

  
    [image: {S(x_j) = W_{1C} + W_{2G} + W_{3T} + W_{4A} + W_{5A} + W_{6G} + W_{7G} + W_{8T}}]
  

  

  Note that for this score to make sense, you need to test a sequence [image: x_j] that is the same length as the motif.

  2.4.5 Biopython Motifs

  
    The [image: \texttt{motifs}] module
  

  Now let’s see how we can go about building a weight matrix using Biopython [17]. First, we’ll need to import modules as usual. Next, we’ll need to specify a set of instances of our motif. In theory, this would be best done as reading in a FASTA file of instances. Next, we can create our motif from the list of instances. Here’s how this looks:

 >>> from Bio import motifs
 >>> from Bio.Seq import Seq
 >>> instances = [Seq("CAGTT"),Seq("CATTT"),Seq("ATTA"),Seq("CAGTA"),Seq("CAGTT"),Seq("CAGTA")]
 >>> motif = motifs.create(instances)
 >>> print(motif.degenerate_consensus)
 CAKTW

  

  In this example, we have created a motif from a simple list of instances, each of which are [image: \texttt{Seq}] objects, typed in using the [image: \texttt{motifs.create()}] method. The method [image: \texttt{degenerate_consensus}] is useful for creating a concise sequence representation. We lose some information by only keeping this consensus sequence, and not keeping the matrix. By creating this motif object, we can also print out the count matrix for this motif:

 >>> print(motif.counts)
 0 1 2 3
 A: 0.00 0.00 3.00 0.00
 C: 6.00 0.00 0.00 2.00
 G: 0.00 6.00 3.00 2.00
 T: 0.00 0.00 0.00 2.00
 

  
    JASPAR sites
  

  We often want to create a motif from external data sources. One such database of motifs is JASPAR http://jaspar.genereg.net[18]. On this webpage we can browse through various motifs. For example, in the “JASPAR CORE Insecta” section, we can see the motif MA0447.1 for the Giant binding motif http://jaspar.genereg.net/cgi-bin/jaspar_db.pl?ID=MA0447.1&rm=present&collection=CORE. After downloading the “sites” file as a FASTA file in the lower left, we can see from the file “MA0447.1.sites” that it is similar to FASTA, but contains some additional information:

  
    
 >MA0447.1gt1
 tttctgttttggcgtaTTTATGTGATgc
 >MA0447.1gt2
 ggtggcactaccctGTTACGCAATat
 >MA0447.1gt3
 tTTAATATAACgcttctatctttgttta
 >MA0447.1gt4
 gttgttacgcgtGTTACATAATgcttcg
 >MA0447.1gt5
 aaccactgtaaagctCCGGCGTATTggc
 ...
  

  

  We can see that there is additional information encoded in the capitalized letters, indicating where the binding site is. Secondly, this format doesn’t work for most programs as a FASTA file because the string directly after the “[image: \gt]” not unique for each line, but instead the unique information comes after with the numbering. We therefore need a special method to read in this information. The [image: \texttt{motifs}] module has a method for reading this information. Let’s create a logo while we’re at it:

 >>> from Bio import motifs
 >>> motif = motifs.read(open("MA0447.1.sites"),"sites")
 >>> print(motif.counts)
 0 1 2 3 4 5 6 7 8 9
 A: 9.00 0.00 1.00 29.00 0.00 5.00 0.00 30.00 33.00 0.00
 C: 4.00 1.00 0.00 0.00 29.00 0.00 3.00 2.00 1.00 8.00
 G: 18.00 1.00 2.00 4.00 0.00 30.00 1.00 1.00 0.00 4.00
 T: 4.00 33.00 32.00 2.00 6.00 0.00 31.00 2.00 1.00 23.00

 >>> motif.weblogo("giant_LOGO.pdf",format="pdf")

  

  This last command produces a LOGO image and requires an internet connection. It actually sends the data to the website http://weblogo.berkeley.edu/[19]. The resulting LOGO image looks like this, which is similar to the motif logo seen on the JASPAR database:

  

  
    
      [image: A graph depicting the LOGO image for the giant motif.]
    
    Figure 2.1: Sequence LOGO created with weblogo for the giant motif

  

  We’ve already seen how to score a particular sequence with a weight matrix, and how to build a weight matrix form a collection of instances. In practice, we often have longer sequences where we don’t know precisely where the instances are, but know that the sequences contain subsequences that are instances of the motif.

  2.5 Promoters

  Broadly speaking, the promoter of a gene is the set of genomic DNA sequences that direct the gene’s transcription. This can include the core promoter that is the most proximal region around the gene’s transcription start site, and can also include other regions of genomic DNA that are involved in transcription initiation.

  2.5.1 Core Promoters

  The core promoter is a collection of binding sites, capable of directing the initiation of transcription, and located within [image: +/- 40bp] from the TSS. In eukaryotes, this can include the TATA-box and the Initiator, as well as other motifs that are more organism-specific.

  2.5.2 Databases of Promoters/TSSs

  There are a number of databases that are devoted to cataloging the locations of the promoters and transcription start sites of genes.

  
    EPD: Eukaryotic Promoter Database
  

  The Eukaryotic Promoter Database (EPD) is a resource of experimentally validated promoter locations for animals, plants, and fungi. This database contains non-redundant entries of promoter locations for Humans, mouse, D. melanogaster, zebrafish, C. elegans, Arabidopsis thaliana, S. cerevisiae, and S.pombe. The database can be accessed at http://epd.vital-it.ch/.

  2.6 De novo Motif Finding

  2.6.1 Gibbs Sampling

  Gibbs sampling has many applications in statistical physics in general [20]. Is sometimes called a Markov-chain Monte Carlo (MCMC) approach. Briefly, Gibbs sampling starts with a set of sequences in which there is a motif of unknown sequence content. First, random initial positions of the motif are selected. Next, a weight matrix is built from those instances. The weight matrix is then used to re-score the positions of the input sequences, to find a new optimal set of instances, and the weight matrix is subsequently updated. This process is repeated until convergence. Perhaps surprisingly, this method is capable of finding motifs quite well.
 You might try as a challenge exercise, to implement Gibb’s Sampling with Biopython. For example, if you have a list of sequences [image: \texttt{seqs}], you can generate random positions for the initial motif instances for [image: K=7] using the python module [image: \texttt{random}], and extract subsequences corresponding to these positions.

 >>> from Bio.Seq import Seq
 >>> import random
 >>> seqs = [Seq('GTCGATCGATCGTACGTACGTACGTACGATGCTAGCTACGTACC'),
 Seq('GGTTCGAGTCGAGCAAGAGCTAGCTAGCGACGTACTAC'),
 Seq('GCTGATCATGCTAGCGCGTAGCTACGATCGTACGTACGATGAGCTAGCTACGTCTACGTACGTGCACA')]
 >>> K = 7
 >>> instances = []
 >>> for seq in seqs:
 ... instances.append(seq[j:j+K])
 ...
 >>> print(instances)
 [Seq('CGTACGT', Alphabet()), Seq('AAGAGCT', Alphabet()), Seq('CGCGTAG', Alphabet())]

  

  You could create a motif from the instances as before. This will serve as the initial motif, and it would be updated repeatedly for some number of steps.

 >>> from Bio import motifs
 >>> motif = motifs.create(instances)
 >>> print(motif.counts)
 0123456
 A: 1.00 1.00 0.00 2.00 0.00 1.00 0.00
 C: 2.00 0.00 1.00 0.00 1.00 1.00 0.00
 G: 0.00 2.00 1.00 1.00 1.00 1.00 1.00
 T: 0.00 0.00 1.00 0.00 1.00 0.00 2.00
 >>> weightMatrix = motif.pssm
 >>> print(weightMatrix)
 0123456
 C: 1.42 -inf 0.42 -inf 0.42 0.42 -inf
 G: -inf 1.42 0.42 0.42 0.42 0.42 0.42
 T: -inf -inf 0.42 -inf 0.42 -inf 1.42

  

  This weight matrix could in theory be used to collect the instances of the motif, and you could collect the top scoring instances for each of the input sequences, using something like this for each of the input sequences:

 >>> for position,score in weightMatrix.search(seq):
 ...print(position, score)

  

  These updated instances could be used to create new motif, and this process could be repeated. I leave this as a challenge for the reader

  2.6.2 MEME and the EM Algorithm

  One of the most widely used software tools for motif discovery is MEME: Multiple EM for Motif Elicitation. MEME uses Expectation Maximization to find the best binding sites [21]. The algorithm computes the parameters that maximize the expected value of the (log-)likelihood pf the model. The EM algorithm attempts to learn the “missing data”, in this case the positions of the instances of the motif. Once the instances of the motif are identified, an updated weight matrix can be computed.
 MEME starts with some initialization of motifs built from the enriched K-mers. Essentially this list of initial motifs is achieved through a heuristic method, which applies one iteration of EM on all K-mers. The algorithm computes an expression for the expected value of the log-likelihood. It then computes the value of the motif membership variable Z that maximizes the expected value of the log-likelihood. This process is repeated until convergence.
 There are numerous options for running MEME. For example, one can select how the instances of the motifs are distributed in the input sequences. They are specified by the “-mod” option and can be:

  
    	oops – Exactly one instance per sequence.

    	zoops – One or zero instances per sequence.

    	anr – Any number of instances per sequence.

  

  To find a motif in the input file “sequences.fa” that has a maximum motif length (specified with the -maxw option) and requiring exactly one occurence per sequence, we would use the following command

 $ meme sequences.fa -dna -mod oops -maxw 12

  

  Similarly, to find [image: 2] different motifs, each with a maximum length (width) of [image: 10], and such that each sequence has zero or one instance, we would use the following command:

 $ meme sequences.fa -dna -mod zoops -maxw 10 -nmotifs 2

  

  For a full list of options, try typing [image: \texttt{meme --help}] on the command line.

  2.7 Lab 3: Introduction to Motifs

  In this lab, we are going to learn about various ways to produce motifs from sequence data. The purpose is to show what works and what doesn’t. Let’s start by creating a directory called [image: \texttt{Lab3}], and [image: \texttt{cd}] into this directory, similarly as before.

  2.7.1 Part 1: Building a motif and LOGO image

  First, let’s download a list of sequences that contain a motif at random positions and and some flanking sequence.

 $ wget http://hendrixlab.cgrb.oregonstate.edu/teaching/gt.fasta

  How many lines are in this file? How many sequences does that mean are in the file?
 Let’s try and create a motif from this data. What do you expect to happen?

 >>> from Bio import SeqIO
 >>> from Bio import motifs
 >>> from Bio.Seq import Seq
 >>> sequences = SeqIO.parse("gt.fasta","fasta")
 >>> instances = []
 >>> for data in sequences:
 ...instance = data.seq
 ...instances.append(instance)
 ...
 >>> motif = motifs.create(instances)

  

  Now the motif is created in the “motif” object. What does the count matrix look like? You can print it out by this command:

 >>> print(motif.counts)

  

  Create a motif LOGO from these counts. We can go through the web, or we can create one right now with Biopython:

 >>> motif.weblogo("giant_1.pdf",format="pdf")
 >>> quit()

  

  Does this look like a good motif? How can you tell?

  2.7.2 Part 2: JASPAR Database and “sites” format.

  Now go to the website JASPAR at http://jaspar.genereg.net. Go to “JASPAR CORE Insecta”. Then find the motif for “giant”, labeled “gt” (motif ID MA0447.1). Click the motif LOGO image to get a pop-up of the motif details (you may need to enable pop-ups on your browser). How does the motif LOGO compare to what we found just by building a LOGO from the FASTA file of all the sites? (If you have issues downloading the file, you can get it here.)
 Now let’s download the sites in JASPAR format, which is a variation on FASTA, with a little more information. Click the link that says “(Show me all binding sites)..as fasta file” in the lower left portion of the pop-up. Transfer the downloaded file to crick by using the folder icon for file transfer. By looking at the file, what differences do you see?

 $ less MA0447.1.sites

  

  Now, let’s load this data using a special function that is part of the motifs module:

 >>> from Bio import motifs
 >>> motif = motifs.read(open("MA0447.1.sites"),"sites")
 >>> print(motif.counts)

  

  How does this compare to what you found previously? Now create a motif LOGO and exit:

 >>> motif.weblogo("giant_2.pdf",format="pdf")
 >>> quit()

  

  How does this motif compare to the image on the JASPAR webpage

  2.7.3 Part 3: Running MEME on the command line

  The reason why our first method didn’t work is because we just looked at sequences without performing motif finding. The JASPAR sites file encodes this information in the capital letters, letting it know where the motif instances are. Now let’s try motif finding on the first set of data to see if we can recover it.

 $ meme gt.fasta -dna -mod oops -nmotifs 1 -maxw 12 -o gt_3

  

  What do each of these parameters mean? Take a look at the output file. Note the “information content” information, as well as probability scores (p-values) for the instances.

 $ less gt_3/meme.txt

  

  Finally, by using the file transfer icon, let’s look at the meme.html output file and associated LOGO image generated by MEME. How does this compare to the actual motif in JASPAR?

  Bonus question: What happens when you add the “-revcomp” flag to MEME? What is the difference in the output and why do you think this is?

 $ meme gt.fasta -dna -revcomp -mod oops -nmotifs 1 -maxw 12 -o gt_4
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Chapter 5: Genomics



  
  

  In this chapter, we will learn how to work with genomic data and genome annotations and associated file formats. It is hoped that this chapter will serve as a basic introduction to genomics, with the understanding that it is a far broader field than the types of genome annotations presented here. Many of the chapters, such as the next chapter “Transcriptomics”, and many before, could be considered as a subject matter as part of the field of genomics.

  5.1 The Three Fundamental “Gotchas” of Genomics

  

  Whereas many sciences have three or four fundamental laws that describe them, research in genomics often encounters exceptions to rules rather than universal principles. However, when learning genomics for the first time, researchers often encounter the same problems that cause the same strange things to happen in their data. These errors are so common for beginners in genomics, they can be thought of as the “fundamental gotchas” of genomics:

  
    	Different genome assemblies

    	Different chromosome deflines

    	0 vs 1-based coordinates

  

  5.1.1 Different Genome Assemblies/Annotations

  

  The first fundamental gotcha involves the fact that for any model organism, there are typically many different genome assembly versions. For example, one might download two different datasets, such as a set of genomic positions, and try to compare them, only to realize that they were compared against different assemblies of the genome. In many cases, such as human genome assembly versions, each being incremental improvements in the accuracy of the assembly.

  5.1.2 Different Chromosome Deflines

  

  Depending on from where you downloaded the genome annotation, you could possibly encounter an assembly that uses one defline for “Chromosome 1”, and another that uses a different one. For example, some annotations such as from UCSC Genome Bioinformatics, would use “chr1”, and other databases may just use “1”. You definitely need to double check these values when comparing different formats.

  5.1.3 0 vs 1-based coordinates

  

  The third fundamental gotcha involves comparing data from different file formats, and not being aware that some file formats use [image: 0]-base positions, and others use [image: 1]-based positions. Whereas [image: 0]-based coordinates consider the first position of a chromosome to be position [image: 0], [image: 1]-based coordinates consider the first position of a chromosome to be position [image: 1]. In many ways, [image: 0] is more natural for computer science, because typically programming languages use [image: 0]-based coordinates to describe strings. Biologists may be more accustomed to counting positions starting at [image: 1]. There are many different file formats for storing the positions of genomic locations, each use one of these two position systems, so it’s important to know which is which, and be aware that there is a difference.

  Table 5.1: Different file formats use different position systems. 	Format 	Position system 
 	GFF/GTF 	1-based 
 	BLAST results 	1-based 
 	BLAT results 	1-based 
 	maf 	0-based 
 	BAM 	0-based 
 	SAM 	1-based 
 	BED 	0-based 
 	wig 	1-based 
  

  5.2 Genomic Data and File Formats

  5.2.1 Formats for Genomic Locations

  

  One of the most common form of genome annotation is that of the genome location. Often we want to annotate and label a binding site for a protein, or a gene by the genomic locations of the exons. Therefore, we need to define file formats that specify genomic locations.
 Often, we can describe a genomic location by four variables that specify the “genomic coordinate”. The “genomic coordinate” can be specified by a chromosome, a start position, a stop position, and a strand. Clearly, the fundamental gotchas are important when evaluating these four values. For strand, it is most common to see “+” and “-” to refer to the forward and reverse strand. However, if you look at enough databases you will find things like “F” and “R” to denote strand.

  
    BED Files
  

  

  BED files are a simple file format to describe genomic locations. The BED file was developed by UCSC Genome Bioinformatics, and is a common format found when downloading data from that site. These descriptions are derived from the descriptions at UCSC (https://genome.ucsc.edu/FAQ/FAQformat.html). The first three required BED fields are:

  
    	chrom: The name of the sequence (e.g. chromosome or scaffold) that the feature is within.

    	chromStart: The beginning position of the defined genomic region, in 0-based positions.

    	chromEnd: The ending position of the defined genomic region, in 1-based positions. The chromEnd base is not included in the display of the feature, so it behaves much like ranges and substrings in python.

  

  

  So using this core required format, the BED file can be a useful streamlined representation of genomic positions where strand is not important. We can expand the file format to include other information, for example when we want to store data for gene models. The next columns we could add are:

  
    	name: Defines the name or ID of the feature or genomic region.

    	score: A numerical value defining a score from 0 to 1000. Could be replaced with a dot.

    	strand: The strand of the genomic region, represented by “+” for forward strand or “-” for reverse complement.

    	thickStart: The beginning position of the portion of the genomic region to be drawn larger than the rest, for example a CDS to stand out from the rest of the gene.

    	thickEnd: The ending position of the portion of the genomic region to be drawn larger.

    	itemRgb: This is used to set the color of the genomic feature for some genome browsers, defined as a value for red, green, and blue as a number from 0 to 250 for each. For example, green would be (0,255,0), or blue would be (0,0,255), or many shades in between, such as a type of blue-green might be (0,100,100).

    	blockCount: For features that can be in multiple pieces, such as eons, this sets the number of blocks.

    	blockSizes: For features that can be in multiple pieces, such as exons, this comma-separated string of lengths, sets the length of each piece.

    	blockStarts: This comma-separated string of positions defines the start position of the exons or blocks.

  

  
    GFF Files
  

  

  GFF format is a great way to store gene annotation information. In many ways the columns of GFF are designed for genes, but by including a dot “.” for the columns that don’t apply to your annotation, you can also store more simple annotations such as the locations of a motif instance.

  
    	seqname – The name of the sequence. Must be a chromosome or scaffold.

    	source – The program that generated this feature.

    	feature – The name of this type of feature. Some examples of standard feature types are “CDS”, “start_codon”, “stop-codon”, and “exon”.

    	start – The starting position of the feature in the sequence. The first base is numbered 1.

    	end – The starting position of the feature (inclusive).

    	score – A score between 0 and 1000. If the track line useScore attribute is set to 1 for this annotation data set, the score value will determine the level of gray in which this feature is displayed (higher numbers= darker gray). If there is no score value, enter “.”.

    	strand – Valid entries include “+”, “-“, or “.” when strand doesn’t apply.

    	frame – If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first base. If the feature is not a coding exon, the value should be “.”.

    	group – All lines with the same group are linked together into a single item.

  

  
    GTF Files
  

  

  A GTF file is very similar to a GFF file, but with a few different specifications. The first eight GTF fields are the same as GFF. The group field has been expanded into a list of attributes. Each attribute consists of a type/value pair. Attributes must end in a semi-colon, and be separated from any following attribute by exactly one space. The attribute list must begin with the two mandatory attributes:

  
    	gene_id value – A globally unique identifier for the genomic source of the sequence.

    	transcript_id value – A globally unique identifier for the predicted transcript.

  

  
    BAM/SAM
  

  	Col 	Field 	Type 	Brief description 
 	1 	QNAME 	String 	Query template NAME 
 	2 	FLAG 	Int 	bitwise FLAG 
 	3 	RNAME 	String 	Reference sequence NAME 
 	4 	POS 	Int 	1-based leftmost mapping POSition 
 	5 	MAPQ 	Int 	MAPping Quality 
 	6 	CIGAR 	String 	CIGAR string 
 	7 	RNEXT 	String 	Ref. name of the mate read 
 	8 	PNEXT 	Int 	Position of the mate/next read 
 	9 	TLEN 	Int 	observed Template LENgth 
 	10 	SEQ 	String 	segment SEQuence 
 	11 	QUAL 	String 	ASCII of Phred-scaled base QUALity+33 
  

  

  A BAM file is essentially a binary, typically indexed version of SAM. The program [image: \texttt{samtools}] can allow quick retrieval of reads from a genomic region. SAM files is an optional output format for many alignment algorithms, but many people prefer to convert them to BAM files because of faster retrieval of reads for a particular genomic position due to indexing.

  Quantitive Tracks

  

  We often would like to annotate quantitative data on a genome browser; hence, it is critical to have file formats devoted to this kind of data. Consider, for example, plotting the GC content as a function of position throughout the genome.

  
    BedGraph
  

  
    
 track type=bedGraph
 chrom1 chromStart1 chromEnd1 dataValue1
 chrom2 chromStart2 chromEnd2 dataValue2
 
  

  
    Wiggle, and BigWig
  

  

  Wiggle file format is a common way to display quantitative tracks. The format is relatively simple, but takes on two different version: [image: \texttt{variableStep}], and [image: \texttt{fixedStep}]. Each of these are specified at the top of the file. For the fixed step, we have a fixed number of bases between positions presented in the file:

 fixedStep chrom=chrN start=position step=stepInterval [span=windowSize]
 dataValue1
 dataValue2
 dataValue3
 ...

  

  Because the start position is specified, and the step size is specified, positions don’t need to be specified in the file. For the variable width, we’ll need to specify the position for each value:

 variableStep chrom=chrN [span=windowSize]
 chromStart1 dataValue1
 chromStart2 dataValue2
 chromStart3 dataValue3
 ...

  

  The optional parameter “span” does not include the brackets when used in practice, and here only indicates that it is optional. The span essentially indicates that a value can be specified as applying to a range of positions, starting at the given chromStart value.

  5.3 Genome Browsers

  

  Genome browsers provide an interactive way to navigate the data associated with a genome in a visual way. Much like a web browser or an interactive map application. The file formats given above are exactly the kind of files that a genome browser would read and present visually.

  5.3.1 IGV

  

  The Integrated Genome Viewer (IGV) is a powerful desktop genome browser that allows you to relatively easily add and remove tracks and modify them. IGV allows you to export to various image formats, including scalable vector formats such as SVG files. In some cases the available RAM on one’s computer may be a limitation for loading too many tracks into IGV.

  5.3.2 UCSC Genome Browser

  

  The UCSC genome browser is a web-based genome browser. You can download, install, and host a version of the UCSC genome browser on your own computer, but you can also add tracks to the genome browser hosted at https://genome.ucsc.edu/cgi-bin/hgGateway.

  5.3.3 Gbrowse

  

  Gbrowse is probably one of the most common genome browsers out there. Many databases such as Flybase, or Wormbase have Gbrowse integrated in to the database for users to navigate the genomic data presented. Gbrowse allows for the display to be exported into multiple file formats, including scalable file formats.

  5.3.4 JBrowse

  

  Jbrowse is very similar to Gbrowse, but allows for asynchronous queries to the database, effectively making for a faster experience. One can scroll the position rapidly and have features immediately presented to the user without having to reload the page. Jbrowse allows the display to be exported in PNG, but not in a scalable file format.

  5.4 Lab 6: Genome Annotation Data

  

  In this lab, we will examine a script that will take a GFF annotation as input, and will extract protein-coding exons, concatenate them, and then translate them into a protein sequence. As usual, let’s work on this project in its own directory.

  5.4.1 Part I: Storing a Genome to a Dictionary

  

  A dictionary is a data structure with key-value pairs. Dictionaries are indexed by a “key”, which can be any string. This could be a useful concept for dealing with many sequences from a FASTA file, with the defline as the key.

 >>> dict = {}
 >>> dict["R2D2"] = "droid"
 >>> dict["Vader"] = "Sith"
 >>> dict["Yoda"] = "Jedi"
 >>> print(dict)
 {'Vader': 'Sith', 'R2D2': 'droid', 'Yoda': 'Jedi'}
 >>> print(dict["R2D2"])
 droid

  

  Note how the dictionary looks when you print it out. You see a list of key-value pairs, separated by a colon “:”. Moreover, whereas the list is enclosed by square brackets when printed out, the dictionary is enclosed by curly braces when printed out. Nevertheless, both of them allow you to access a particular term with square brackets such as [image: \texttt{list[2]}] or [image: \texttt{dict["R2D2"]}].
 It turns out, it is a pretty good way to store a genome, namely with the chromosome names (deflines) as the key, and the sequence as the value.

 genome = {}
 sequences = SeqIO.parse(genomeFasta,"fasta")
 for record in sequences:
 genome[record.id] = record.seq
 

  5.4.2 Part II: Storing a GFF to a list

  Next, let’s review creating a list and appending values to it. In this case, we will append (chrom,start,stop) genomic locations corresponding to CDS exons:

 coords = []

  
    
 GFF = open(gffFile,'r')
 for line in GFF:
 if "#" not in line:
 chrom,source,seqtype,start,stop,score,strand,frame,attributes = line.strip().split("\t")
 if "CDS" in seqtype and name in attributes:
 coords.append((chrom,int(start),int(stop)))
  

  

  A couple of things to note. First, we have a gene name in mind, stored in the variable “name”. We expect this to be a transcript ID because a gene ID could end up printing too many lines (one for each transcript associated with that gene). If we want to extract coding regions, it should be on a per-transcript basis. Second, we note that we are converting the positions to integers upon reading in. By default they are stored as strings, so the conversion is important. Third, note that we are excluding lines with a hash [image: \texttt{#}] because these are typically comments that do not contain the required number of columns.

  5.4.3 Part III: Find a gene of interest in Drosophila melanogaster

  

  Let’s use NCBI Protein or NCBI Gene to find a your favorite gene. Let’s then BLAST it to Drosophila (by setting Drosophila as the taxa), and find the best Drosophila ortholog.

  Next, let’s find a [image: \textbf{flybase transcript ID}] for one of the isoforms of the gene by navigating the flybase database and Gbrowse from flybase. Note that a [image: \textbf{flybase transcript ID}] looks like this: FBtr001828
 Go to Flybase (http://flybase.org/) and search for a gene of interest, then paste your gene name into the “Jump to Gene” box on the upper left.

 $ wget http://hendrixlab.cgrb.oregonstate.edu/teaching/flybase_r5.56.gff3

  

  To use this script, you’ll need to download a flybase annotation. Download this one with wget:

 $ wget http://hendrixlab.cgrb.oregonstate.edu/teaching/flybase_r5.56.gff3

  

  Next, let’s look at the gff file. Let’s use less, but turn off word-wrap with the -S option.

 $ less -S flybase_r5.56.gff3

  

  Next, you can create a symbolic link to the genome file you created in Lab 4 (section 3.5) to your current directory with a command like this, but you may need to updated it based on where the file is:

 $ ln -s ../Lab4/dm3.fa genome.fa

  

  In this command, the first file “../Lab4/dm3.fa” is your original genome file. The second file name “genome.fa” is the name of the symbolic link you will be creating (but you can name it what you want). Now, let’s take a look at the script.

 import sys
 import re
 from Bio import SeqIO
 from Bio.Seq import Seq

  
    
 # this section takes care of reading in data from user
 usage = "Usage: " + sys.argv[0] + " "
 if len(sys.argv) != 4:
 print(usage)
 sys.exit()
  

  
    
 # read the input files/args.
 genomeFasta = sys.argv[1]
 gffFile = sys.argv[2]
 name = sys.argv[3]
  

  
    
 # read the fasta file into a dictionary.
 genome = {}
 sequences = SeqIO.parse(genomeFasta,"fasta")
 for record in sequences:
 genome[record.id] = record.seq
  

  
    
 # initialize some variables
 revcomp = False
 coords = []
  

  
    
 # read through the gffFile
 GFF = open(gffFile,'r')
 for line in GFF:
 if "#" not in line:
 chrom,source,seqtype,start,stop,score,strand,frame,attributes = line.strip().split("\t")
 if "CDS" in seqtype and name in attributes:
 coords.append((chrom,int(start),int(stop)))
 if strand == "-":
 revcomp = True
  

  
    
 # reverse the order of the exons if on "-" strand
 coords.sort(reverse = revcomp)
  

  
    
 # collect the coding exons of the transcript
 ORF = Seq('')
 for chrom,start,stop in coords:
 CDS = genome[chrom][start-1:stop]
 if revcomp:
 CDS = genome[chrom][start-1:stop].reverse_complement()
 # concatenate the coding sequence
 ORF += CDS
  

  
    
 # transcribe,translate, and print
 RNA = ORF.transcribe()
 Protein = RNA.translate()
 print(Protein)
  

  

  Finally, after you copy the text of the above script into a file called “extractGeneAndProtein.py”, and put into a scripts directory you can run the script using the transcript ID for your favorite gene. Note, here we are using the genome FASTA file created in a previous lab, Lab 4 (section 3.5), but with the symbolic link created above.

 $ python scripts/extractGeneAndProtein.py genome.fa flybase_r5.56.gff3 FBtr0089362
 

  





  
  





Chapter 6: Transcriptomics



  
  

  Broadly speaking, Transcriptomics is the study of transcriptomes, the sum total of all transcripts in a cell. Transcriptomics seeks to build transcriptome annotations, and to measure differential expression of transcripts from different tissue types or treatments.

  6.1 High-throughout Sequencing (HTS)

  

  High-throughput sequencing (also known as deep sequencing) is a technology that has been developed in the late 20th century and continues to improve today. High-thoughtput sequencing has many applications, and most relevant for transcriptomics is deep sequencing of RNA, called RNA-seq. The word “deep” in deep sequencing refers to the depth of sequencing, characterized by:

  

  
    [image: D = \frac{N \times L}{T}]
  

  

  where the depth [image: D] is computed from the number of reads [image: N], the length of the reads [image: L], and the size of the transcriptome [image: T]. The size of the transcriptome [image: T] can be thought of the length of the union of all transcripts for a particular system. A depth of [image: 2\times] means that on average a location in the genome would have [image: 2] reads mapping to that location, assuming a uniform distribution of reads. This equation assumes that the reads are uniformly distributed, which is almost never true. Nevertheless it serves as a good approximation.

  High-throughput sequencing can produce hundreds of millions of reads per sequencing lane, and in many cases the lane is multiplexed to include multiple samples per lane. This technology has enabled scientists to study biological phenomena at a genome-wide scale, and has enabled the discovery of a number of properties of transcription.

  6.2 RNA Deep Sequencing

  

  RNA deep sequencing is a method where a cDNA library is created for an RNA sample, and is sequenced using high-throughput sequencing, producing hundreds of millions of reads. Notably, there are different types of RNA-seq data sets. First, single-end reads involve the sequencing of one read per cDNA fragment, typically in the 5′ to 3′ direction. Paired-end reads have two reads per fragment, with the two paired-reads called “mates”. Often the first mate is sequenced in the direction of transcription, and the second mate is sequenced in the opposite 3′ to 5′ direction. This, however, can vary on the sequencing technology used. The manual for tophat 2 (https://ccb.jhu.edu/software/tophat/manual.shtml) provides the information on Figure 6.4.

  

  
    
      [image: Single-end vs paired-end RNA sequencing]
    
    Figure 6.1: A representation of single-end vs paired-end RNA sequencing. While single-end returns one read per fragment, paired-end returns two reads, sequenced from opposite ends of larger fragments.

  

  6.2.1 Single-end Sequencing

  

  Single-end Sequencing produces one read per fragment, so it can be good for transcript quantification, but may not resolve differences in expression across splice variants or different isoforms of the same gene. Therefore, it can be good for quantifying small RNA expression, or expression at the gene-level when splice variants are not a concern.

  6.2.2 Paired-end Sequencing

  

  Paired-end Sequencing produces two reads per fragment, and where typically a fragment size distribution is known or estimated. The result is the information of both reads in a pair, often called “mates”, can be helpful in transcriptome assembly and more precise quantification of different splice variants.

  

  Important: to get the most out of paired-end sequencing, the fragment size should be larger than the combined read length (sum of both reads).

  Typically with paired end data, one receives two [image: \texttt{fastq}] files labeled [image: \texttt{R1}] and [image: \texttt{R2}]. The reads in each file correspond to pairs if they have the same read ID, excluding the possibility of the reads to be labeled [image: \texttt{R1}] and [image: \texttt{R2}] or possibly [image: \texttt{\textbackslash1}] and [image: \texttt{\textbackslash2}]. In practice, the library type can be determined by aligning paired reads from both the R1 and R2 [image: \texttt{fastq}] files to the genome, and examining the relative orientation of the reads and overlapping transcripts.

  6.3 Small RNA sequencing

  

  For small RNA sequencing, one typically uses single-end sequencing, which results in one read per cDNA fragment, typically in the 5′ to 3′ direction.

  

  
    
      [image: Small RNA sequencing]
    
    Figure 6.2: A representation of small RNA sequencing. Reads may contain parts of the 3′ adapter.

  

  6.3.1 Adapter Trimming

  

  Small RNA sequencing uses size-selected small RNA samples and high-throughput sequencing. Such a protocol can be used to sequence RNA species such as microRNAs and piRNAs whose endogenous mature nucleotide sequences can be shorter than the read length used to sequence them. A challenge presented here is that the 3′ adapter sequence needs to be removed before aligning these sequences. For example, the program [image: \texttt{cutadapt}] can be used to trim adapter sequences from an input FASTQ file.

 cutadapt -a ATCTCGTATGCCGTCTTCTGCTTG reads.fastq > reads_trimmed.fastq
 
 where we are trimming off the Illumina TruSeq Small RNA 3′ adapter sequence.

  6.3.2 Alignment of small RNA reads

  

  In general, for both small RNAs and large RNAs, RNA-seq read alignment typically takes a FASTQ file as input, aligns to the genome, and produces a BAM or SAM file as the output.

  One method for aligning reads such as small RNA reads is [image: \texttt{bowtie}]. As one of the first methods for aligning deep sequence data, it does not allow gaps (not until bowtie2) but has other functionality such as colorspace read mapping. As a simple example, you would need to build an index of the genome that you’ll be aligning to (here we are using human genome version hg38) using [image: \texttt{bowtie-build}]. The index of the genome, much like a BLAST index created with [image: \texttt{makeblastdb}] provides a quick look-up of genomic locations to assist with the alignment.

 $ bowtie-build -f hg38.fasta hg38
 

  

  Then you would align the reads (a FASTQ file) to the genome index to create an alignment (a SAM file).

 $ bowtie -m 50 -l 20 -n 2 -S -q hg38 smallRNA_reads.fastq smallRNA_hg38.sam
 

  

  This command takes in several options. In general, the command is the following:

 $ bowtie [options]
 

  

  Where the square bracket terms are optional, and the angle brackets are required (or highly recommended for most practical purposes). In this example, we have a few options specified:

 $ bowtie -m 50 -l 20 -n 2 -S -q hg38 smallRNA_reads.fastq smallRNA_hg38.sam
 

  

  The [image: \texttt{"-m 50"}] specifies reads to have no more than 50 hits to the genome. The [image: \texttt{"-l 20"}] specifies a seed length that will be used for matching to the genome. The number of mismatches to the seed is specified as [image: 2] in the [image: \texttt{"-n 2"}] command. The [image: \texttt{"-S"}] specifies SAM output, and [image: \texttt{"-q"}] specifies FASTQ input.

  6.3.3 Colorspace

  

  As mentioned, [image: \texttt{bowtie}] has the ability to align colorspace reads. Colorspace reads typically come in a [image: \texttt{.csfasta}] file like this:

 >311_5120_1770
 T322302111212131102211023200
 >311_5120_1780
 T303223021112121311011230122

  

  The numbers correspond to the “colors”, which are not literal colors, but rather groups of dimers designated by the groups in Table 6.3.3 and in Figure 6.3.


  	AA 	CC 	GG 	TT 	0=blue 
 	AC 	CA 	GT 	TG 	1=green 
 	AG 	CT 	GA 	TC 	2=yellow 
 	AT 	CG 	GC 	TA 	3=red 
  

  

  The quality scores (PHRED score values) will be in an accompanying [image: \texttt{.qual}] file:

 >read1
 31 31 29 31 28 29 33 22 32 28 33 32 28 30 32 30 31 ...
 >read2
 31 28 29 32 28 22 32 28 33 32 28 30 32 30 31 31 32 ...

  

  Consider the sequence [image: \texttt{T32230211}]. The sequence is determined through a process called “double interogation”. Each nucleotide is determined by two color characters. Therefore, the first character, called the “primer base”, gets the process going. The primer base is removed along with the adjacent color character before alignment. The rest is determined as follows. First number is [image: 3] after the [image: \texttt{T}], leading to the only dimer in the row [image: 3] starting with [image: \texttt{T}], which is [image: \texttt{TA}]. Next, the number is [image: 2] after the [image: \texttt{A}] from before. The only dimer available starting with [image: \texttt{A}] is [image: \texttt{AG}]. This process is continued across the sequence giving the complete sequence [image: \texttt{TAGATTCAC}].

  

  
    
      [image: Shows how colorspace designations can be determined on a matrix.]
    
    A. Colorspace designations can be determined on the following matrix, where the row gives the first nucleotide, and the column gives the second. B. Each dimer in a color space group is closed under the three nucleic acid transformations: reverse, complement, and reverse complement.

  

  

  Color space also has the property that the reverse colorspace sequence is the reverse complement of the original. In the previous example, we saw that the colorspace sequence [image: \texttt{T32230211}] encoded the DNA sequence
[image: \texttt{TAGATTCAC}]. The reverse colorspace sequence would be [image: \texttt{T11120322}], which encodes the reverse complement [image: \texttt{TGTGAATCT}]. This rule holds accept for the the first character, which is the priming base. Note that both colorspace sequences also had an additional number at the beginning ([image: 3] for the first one, and [image: 1] for its reverse complement) which does not work with this reverse/reverse complement rule.

  6.3.4 Quantifying small RNA Expression

  

  For small RNA sequencing, the length is less of a concern. For example, with mature microRNAs, whether it is 18 or 25nt, you typically sequence one read per fragment. This fact suggest that small RNA reads don’t need to be normazlied by the length. Therefore, for a microRNA [image: m] with [image: R_m] reads mapping to it out of [image: N] total mapped reads, we would compute the expression [image: RPM_m] as

  

  
    [image: {\label{RPMeq} RPM_m = \frac{R_m 10^6}{N }}]
  

  (6.1)

  

  With the module [image: \texttt{pysam}], you can load a BAM file with the following command:

 import pysam
 bam = pysam.AlignmentFile("smallRNA_hg38.bam", "rb")

  

  In this command, the “rb” term specifies “read” and “bam”. If it was a SAM file, you would just use “r”. You can retrieve the reads overlapping a genomic location with a command like this:

 miR_count = bam.count(chrom,start,end)

  

  Where [image: \texttt{chrom,start,end}] are a predefined set of variables that could have been read in from a GFF file similar to Lab 6. For this function, the chromosome is a string, and the start ad stop are both ints. These ints behave like normal python boundaries, with start 0-based and the end being 0-based non-inclusive.

  A better method of counting the microRNAs might also check the strand of the read.

 import pysam
 bam = pysam.AlignmentFile("smallRNA_hg38.bam", "rb")

  
    
 chrom,start,end,strand = location
  

  
    
 miR_count = 0
 for read in bam.fetch(chrom,start,end):
 if read.is_reverse:
 if strand == '-':
 miR_count += 1
 else:
 if strand == '+':
 miR_count += 1
 
  

  6.4 Long RNA sequencing

  

  The sequencing of long RNAs, such as mRNAs and long non-coding RNAs (lncRNAs) requires long read sequencing, or simply called “RNA-seq”. Single-end Sequencing produces one read per fragment, so it can be good for transcript quantification, but may not resolve differences in expression across splice variants or different isoforms of the same gene. Therefore, it can be good for quantifying small RNA expression, or expression at the gene-level when splice variants are not a concern.

  6.4.1 Quality Trimming

  

  It is good practice to trim off low-quality nucleotides from the reads based on the PHRED score. Similar to adapter trimming, this will improve the alignment.

 $ fastq_quality_trimmer -t 30 -l 18 -i input_reads.fastq -o output_trimmed_reads.fastq

  

  Is the PHRED score threshold specified by [image: \texttt{"-t 30"}] a good one? The [image: \texttt{"-l 18"}] threshold specifies that trimmed reads less than 18nt should be discarded.

  6.4.2 Paired-end Library Types

  

  The different arrangements of paired-end reads depticted in Figure 6.4. In practice, the library type can be determined by aligning paired reads from both the R1 and R2 fastq file to the genome, and examining the relative orientation of the reads and overlapping transcripts.

  

  
    
      [image: Different library types found in RNA-seq data.]
    
    A representation of an the different library types found in RNA-seq data used in [image: \texttt{tophat}], [image: \texttt{cufflinks}], and [image: \texttt{cuffdiff}]. The most common is fr-secondstrand, with the [image: \texttt{R1}] read in the direction of transcription.

  

  6.4.3 Methods of Read Alignment

  

  The first step of an RNA-seq analysis is aligning the reads to the genome. Actually, there are approaches to RNA-seq without a genome discussed in section 6.4.6. For organisms with an assembled genome, the typical approach is to align the reads to the genome. There are many different programs to do this, with different features. For eukaryotic organisms, it is important that the alignment allows for gaps corresponding to introns. Another important consideration is the number of mismatches allowed in the alignment. For a highly polymorphic genome, for example, one would want to increase the number of allowed mismatches under the assumption that the transcripts sequenced could be transcribed from a slightly different genome.

  RNA-seq read alignment typically takes a FASTQ file as input, aligns to the genome, and produces a BAM or SAM file as the output.
 Methods for aligning RNA-seq reads include [image: \texttt{hisat}] and [image: \texttt{tophat}], although [image: \texttt{hisat2}] is considered the most updated software. These programs allow gaps and both are derived from [image: \texttt{bowtie2}].

  
    Alignment with [image: \texttt{hisat2}]
  

  

  The first step of aligning is to have an index of the genome. As with bowtie, you would need to build an index of the genome that you’ll be aligning to (here we are using human genome version hg38) using [image: \texttt{hisat2-build}]. Note that the index files created here won’t be compatible with [image: \texttt{bowtie}] and vice versa.

 $ hisat2-build hg38.fasta hg38

  

  Then you would align the reads (a FASTQ file) to the genome index to create an alignment (a SAM file) using [image: \texttt{hisat2}].

 $ hisat2 -q --rna-strandness F -x hg38 -u RNAseq_reads.fastq -S RNAseq_hg38.sam

  

  This command takes in several options. In general, the command is the following:

 $ hisat2 [options] -x -u -S

  

  Where the square bracket terms are optional, and the angle brackets are required (or highly recommended for most practical purposes). In this example, we have a few options specified:

 $ hisat2 -q --rna-strandness F -x hg38 -u RNAseq_reads.fastq -S RNAseq_hg38.sam

  

  The [image: \texttt{"--rna-strandness"}] specifies that the reads are sequenced in the direction of transcription. It could also be [image: \texttt{R}] or if not stated would assume unstranded reads by default. The [image: \texttt{"-q"}] specifies FASTQ input, but this is the default so not strictly needed. Other options could include [image: \texttt{--max-intronlen 100000}] if you wanted to keep intronic gaps less than 100kb.

  
    Alignment with [image: \texttt{tophat}]
  

  

  As an example of aligning reads to the genome, let’s consider [image: \texttt{tophat}], which is part of the Tuxedo suite. For the other steps of the RNA-seq analysis pipeline we will also examine parts of the tuxedo suite pipeline.

  In the case of [image: \texttt{tophat}], which uses bowtie2 for the alignment, the creation of the index is based on the Burrows-wheeler transform. The index of the genome consists of multiple files, but each has the same prefix, or “file base” as an input. For example, with the mouse genome [image: \texttt{mm10.fasta}] that has a file base [image: \texttt{mm10}], we will have the six files [image: \texttt{mm10.1.bt2}], [image: \texttt{mm10.2.bt2}], [image: \texttt{mm10.3.bt2}], [image: \texttt{mm10.4.bt2}], [image: \texttt{mm10.rev.1.bt2}], [image: \texttt{mm10.rev.2.bt2}].

  So, using default parameters, aligning with [image: \texttt{tophat}] would be performed by the following command:

 $ tophat -o reads_mm10_tophat mm10 reads.fastq

  

  where the [image: \texttt{-o}] option species the output directory where the output files are going to go. Probably the most important of the output files in this directory is the BAM file called [image: \texttt{accepted\_hits.bam}]. This file contains a sorted record of the alignment information. There are other files created such as log files that could provide useful information for tracking down issues if something goes wrong. Also among these output files is [image: \texttt{junctions.bed}], which provides a BED file of all splice junctions identified, and the number of reads that span that particular junction.

  Of course, we don’t always want to run [image: \texttt{tophat}] with default parameters. For example, we might want to align with a reference annotation, such that only gaps are considered that correspond to gaps in an input GTF file. To achieve this, we would use the following command:

 $ tophat -o reads_mm10_tophat --no-novel-juncs -G ensembl_mm10.gtf mm10 reads.FASTQ

  

  Here we have specified to not include any novel junctions with the [image: \texttt{--no-novel-juncs}] flag. Required with this flag is to specify a GTF file with the [image: \texttt{-G}] flag. In this case we have specified an annotation from Ensembl for mm10.
 We may consider adding to this a command to specify the number of mismatches (the default is 2). This can be changed with the [image: \texttt{-N/--read-mismatches}] flag.

  
    Quantifying Expression
  

  

  Gene expression studies measure the expression levels of genes by attempting to quantify the number of mRNA transcripts per gene. There are a number of ways to compute gene expression, with varying accuracy and different pros and cons.

  6.4.4 Quantifying Expression with Microarrays

  

  Microarrays allow for high-throughput measurement of gene expression through the use of hybridization probes. The probes are DNA sequences that are complementary to the transcripts that you would like to measure (or more precisely the cDNA created from the transcripts). Because of the requirement of probes to detect the gene expression, one or more probes for each gene needs to be designed. This puts a constraint on the genes that one can detect. Also, different hybridization energies can complicate the analysis in some cases, as this would need to be controlled for.

  6.4.5 Quantifying Expression with RNA-seq

  

  When quantifying expression with RNA-seq, it is important to consider a normalization of the data that best controls for the fact that sequencing depth may vary from experiment to experiment, and gene lengths are highly variable. Longer genes generate more fragments, and hence result in more reads per physical mRNA molecule. One method that has these properties is RPKM, which stands for Reads Per Kilobase of gene length per Million reads mapped. For a gene [image: g] of lenxth [image: L_g], with [image: R_g] reads mapping to it out of [image: N] total mapped reads, we would compute the expression [image: RPKM_g] with

  

  
    [image: {\label{RPKMeq} RPKM_g = \frac{R_g 10^9}{L_g N }}]
  

  (6.2)

  

  
    
    Taking this idea further, another measure of expression is the FPKM, or Fragments Per Kilobase of gene length per Million reads mapped. Here, the fragment refers to the cDNA fragment from which the read was sequenced. For example with paired-end reads, we have two reads per fragment. If one of the mates was of poor quality or did not map, the reads would underestimate the number of fragments mapping to this location. For example, when aligning with [image: \texttt{tophat}], there is an option [image: \texttt{"--no-discordant"}], which would only allow reads where both mates properly map the the same chromosome or scaffold. When this option is not used, there are cases where one fragment corresponds to one read (either [image: \texttt{R1}] or [image: \texttt{R2}]) or both reads. When the [image: \texttt{--no-discordant}] option is used, each fragment corresponds to two reads.
  

  
    Measuring Differential Expression with RNA-seq
  

  

  The program [image: \texttt{cuffdiff}] is part of the [image: \texttt{cufflinks}] software package, and it computes expression values of genes and identifies significantly differentially expressed genes. with default parameters, we can run cuffdiff to compare the expression of two RNA-seq experiments with the following command (input on one line):

 $ cuffdiff -o treatment_vs_control -L treatment,control \\
 ensembl_mm10.gtf treatment_mm10/accepted_hits.bam control_mm10/accepted_hits.bam

  

  So we note that in this case it is required that we specify a GTF annotation file to use to use such that the expression of the genes annotated in this file are quantified. Furthermore, we need two BAM files, presumably both aligned with Tophat using the same parameters. The [image: \texttt{-L}] parameter specifies “labels” for the BAM file compared, such that the output files will use these in the file header. For each BAM file, we could also give SAM files, or a comma-separated list of BAM files corresponding to individual replicates for that experiment. The [image: \texttt{-o}] command specifies the output directory in which the results will be print. Lastly, the [image: \texttt{"\textbackslash\textbackslash"}] is used to split the command on two lines here, but is not necessary to type.

  The results of a cuffdiff computation is a set of many files. Among them are differential expression files called [image: \texttt{.diff}] files. There are files for the genes and for the isoforms for the genes given by [image: \texttt{gene\_exp.diff}] and [image: \texttt{isoform\_exp.diff}] files respectively. These [image: \texttt{diff}] files contain the information on the genomic location of the transcript, as well as FPKM values for the samples compared. Furthermore, it has the log fold change of these expression values, as well as output from a statistical test to identify significantly differentially expressed genes.

  
    Intersection Count, Union Count, and the True Expression
  

  

  When counting reads that overlap a gene model, there are different approaches to quantifying the expression of a gene with multiple transcript isoforms. For example, the intersection count would take the expression of all exons that are common to each isoform in a particular gene. The union count take the perspective of counting the reads that overlap the union of all exons for a particular gene. As pointed out in Trapnell et al.2013, there are issues with both of these models. Figure 6.5demonstrates a scenario with both the intersection and union count models fail to accurately depict the expression of a gene.

  

  
    
      [image: Intersection and union models differing from actual expressions.]
    
    Figure 6.5: A depiction of the intersection and union models, and how they can differ from the actual expression. This diagram is inspired from Figure 1 from Trapnell et al. 2013. In each case, the expression per length is depicted for the two isoforms where each exon of the longer isoform is of length [image: L], and both for the shorter (red) isoform is [image: L/2].

  

  

  6.4.6 Transcriptome Assembly

  

  Transcriptome assembly is the process by which the aligned reads are compiled into transcript models that best represent the read data. At minimum, a transcript model must consist of reads that map to that location. Introns must be supported by a gapped alignment that spans the intronic region, typically further requiring that the donor and acceptor sites are present at the start and end of the intron (GU on the 5′ end and AG on the 3′ end of the intron). We may optionally want to assemble a transcriptome for an RNA-seq experiment when we don’t have a transcriptome annotation available. We may also want to perform this step when none is available. A schematic of how this process is performed is depicted in Figure 6.6

  

  
    
      [image: RNA-seq pipeline for computing transcript models.]
    
     Figure 6.6: A schematic representation of an RNA-seq pipeline for computation of transcript models.

  

  

  
    Stringtie
  

  In general, running [image: \texttt{stringtie}] uses commands of the following form:

 $ stringtie [options] RNAseq_reads.bam -G human_RefSeq.gtf -o transcriptome_v2.gtf

  

  Where the square bracket terms are options. In fact, the [image: \texttt{"-G"}] is also optional, but builds the transcriptome assembly using the provided GTF file as a guide. Other options include for example [image: \texttt{"-j 2"}] would require 2 reads to build a splice junction, rather than the default value of [image: 1].

  You can also use stringtie to combine and merge several GTF files into one. There are two ways to do this.

 $ stringtie --merge [options] gtf_file_list.txt

  

  Where [image: \texttt{gtf\_file\_list.txt}] is a list of GTF files. Alternatively, you can specify the GTF files in a series after the command:

 $ stringtie --merge [options] human_transcripts1.gtf human_transcripts2.gtf
 

  
    Cufflinks
  

  

  The next step of the Tuxedo suite that corresponds to transcriptome assembly is [image: \texttt{cufflinks}]. This can be run with default parameters with the following command:

 $ cufflinks reads_mm10_tophat/accepted_hits.bam

  

  where we have specified the BAM file produced from the previous [image: \texttt{tophat}] commands. We may want to add a reference annotation to our command. This may seem counter-intuitive since the purpose is to create our own new transcriptome assembly, but doing so allows cufflinks to assign gene names corresponding to known gene names in the annotation file. We can do this with the updated command:

 $ cufflinks -g ensembl_mm10.gtf reads_mm10_tophat/accepted_hits.bam

  

  Note that we are specifying the same GTF file as before, but cufflinks uses a lower-case “-g”, whereas [image: \texttt{tophat}] uses an upper-case “-G”. We may want to consider is to make the alignment run “quietly”, by reducing the number of printed messages with the [image: \texttt{-q}] option. Another option worth considering is the [image: \texttt{-I}] option (capital i), which specifies the maximum intron length, or gap-length to consider. Restricting this can occasionally remove artifacts since the default is [image: 300,000]bp.

  
    Transcriptome Assembly without a Reference Genome
  

  

  There are approaches to assemble a transcriptome and quantify gene/transcript expression without a reference genome. Prominent among them is the suite called “Trinity”, which consists of three pieces of software, as the name suggests [54].

  

  
    
      [image: A representation if a non-reference guided transcriptome assembly, Trinity.]
    
    Figure 6.7: A schematic representation of a non-reference-guided transcriptome assembly, Trinity (Grabherret al.2013).

  

  

  The software components of Trinity work in series to create a transcriptome assembly in three steps (Figure 6.7). First, [image: \texttt{Inchworm}] clusters reads by common [image: K]-mers (subsequences of length [image: K]). Next, [image: \texttt{Chrysalis}] clusters contigs into components consisting of matched [image: K]-mers, and builds a de Bruijn graph from these components. In the last step, [image: \texttt{Butterfly}] assembles transcript models from the de Bruijn graph [54].

  6.5 Single-Cell Transcriptomics

  

  While traditional RNA-seq measures gene expression on many, typically heterogeneous cells, single-cell RNA-seq (scRNA-seq) is a method for measuring gene expression in hundreds of individual cells [55]. While these methods do reduce heterogeneity compared to bulk measurements, they do have a large amount of technical noise [56].

  6.6 Transcription Initiation

  

  Transcription Initiation is a remarkable process, because it is very much a needle-in-a-haystack phenomena. Somehow, the cell is able to pinpoint specific single-nucleotide positions out of the genome, and use these specific positions as the start of a transcript. This first nucleotide that is transcribed is called the Transcription Start Site (TSS).

  In many cases, transcription initiation begins with the recognition of the core promoter, which is a collection of binding sites that direct the initiation of transcription. In eukaryotes, RNA polymerase II does not directly recognize the core promoter sequences. Instead, a collection of proteins called transcription (activation) factors (TAFs) mediate the binding of RNA polymerase and the initiation of transcription. Only after certain transcription factors are attached to the promoter does the RNA polymerase bind to it. The completed assembly of transcription factors and RNA polymerase bind to the promoter, forming a transcription initiation complex.

  In prokaryotes, transcription begins with the binding of RNA polymerase to the promoter in DNA. At the start of initiation, the core enzyme is associated with a sigma factor that aids in finding the appropriate -35 and -10 base pairs upstream of promoter sequences. When the sigma factor and RNA polymerase combine, they form a holoenzyme.

  6.6.1 Methods of Mapping Transcription Start Sites (TSSs)

  

  There are many methods that have been developed for the mapping of transcription start sites. Most of these methods rely on the biochemistry of the 5′ end of transcribed RNA.

  
    Cap Analysis of Gene Expression (CAGE)
  

  

  CAGE sequencing begins by capping the 5′ ends of small transcript fragments, which are then extracted, reverse transcribed to DNA, PCR amplified and sequenced. CAGE reads tend to map at the transcription start site of genes , but in practice do map at and around these locations. The CAGE technique precedes that of high-throughput sequencing and was used before then, but has benefited from the depth associated with new sequencing techniques.

  
    Rapid Amplification of edna Ends (RACE)
  

  

  In RACE, a cDNA copy of the mRNA is produced through reverse transcription, PCR amplification of the cDNA copies. There are different methods for 5′ RACE and 3′ RACE, resulting in the proper mapping of both the 5′ end and the 3′ end of genes. 3′ RACE uses the poly(A) tail of genes for priming during the reverse transcription. 5′ RACE uses a gene-specific primer that recognizes a known region of the gene of interest.

  
    Database of Transcription Start Sites (DBTSS)
  

  

  The Database of Transcription Start Sites (DBTSS) is a resource of experimentally mapped transcription start sites, through a method called TSS-seq, and is primarily focused on human and mouse, but contains other species. This database now contains 491 million TSS tag sequences collected from 20 different human tissues and 7 different human cell cultures. The DBTSS can be accessed at http://dbtss.hgc.jp/.
 The TSS-seq method ligates the Illumina sequencing adapter to the 5′ cap site of the mRNA, performs full-length cDNA creation, and high-throughput sequencing. The uniquely mapping sequencing reads are then mapped to the genome, and clustered into [image: 500]bp bins. TSCs overlapping internal exons are then removed, and each cluster is either associated with the most likely RefSeq transcript, or labeled as intergenic

  6.7 Transcription

  

  Transcription is carried out by RNA Polymerase, which makes a RNA copy of the template strand of a gene’s DNA sequence. Measurements of the binding of RNA Polymerase II (Pol II) to genes has revealed that not all genes have the same binding profiles over their promoter regions and gene bodies.

  6.7.1 Measuring RNA Polymerase binding: Pol II ChIp-seq

  

  Pol II ChIP-seq provides a signal the binding of Pol II to the genomic DNA. It measures the recruitment of Polymerase to the genome, but the Ser5 of the Pol II complex needs to be phosphorylated for transcription to begin. Therefore, many of these protocols use antibodies that specifically recognize the Ser5-Phosphorylated form of Pol II as well as other forms.

  Briefly, chromatin samples are crosslinked and sonicated into fragments. Chromatin is immunoprecipitated with a RNA Pol II antibody, or cocktail of antibodies that recognize different forms of Pol II. DNA fragments are then isolated and sequenced with HTS. These reads are then mapped to the genome, and the number of reads that map to a particular genomic region is indicative of the time that Pol II spends binding to that region.

  6.7.2 RNA Polymerase II Stalling

  

  One of the phenomena observed using Pol II ChIP-seq is stalling (Pol II Stalling) [57]. Stalled Pol II is capable of quickly responding to input signals because the transcript is already initiated, and hence is called “poised” [58]for rapid activation. Pol II Stalling is associated with a greater proportion of Pol II ChIP-seq reads at and around the TSS of genes compared to the gene body. For a Pol II signal given by [image: S(i)] for position [image: i] of the genome, The state of being stalled is defined by a large stalling index:

  

  
    [image: SI = \frac{max_{TSS} \{ S(i) \} }{median_{gene} \{ S(i) \}}]
  

  

  where [image: max_{TSS} \{ S(i) \}] indicates the maximum signal value [image: S(i)] within some distance of the TSS of the gene, and [image: median_{gene} \{ S(i) \}] indicates the median signal value within the gene body [57].

  

  
    
      [image: Different Pol II ChIP signals over different genes.]
    
    Figure 6.8: The Pol II signal over a gene can indicate its transcriptional status. A. Genes with a large proportion of Pol II binding at the TSS are “Stalled”. B. Genes with roughly uniformly high Pol II binding for the promoter compared to the gene body are called active. C. Genes with little or no Pol II binding are categorized as “No Pol II”.

  

  6.8 Elongation

  

  Elongation is characterized by the release of Pol II from the promoter, and the production of RNA transcripts. In mammalian genes, the Pol II elongation rates are about 0.5kb per minute in the first few kilobases, and increases to 2-5kb per minute after 15kb [59].

  6.8.1 Measuring Nascent Transcription: GRO-seq

  

  While Pol II ChIP-seq measures DNA-associated Pol II, Global Run-On Sequencing (GRO-seq) measures transcriptionally engaged Pol II, by detecting nascent RNA transcripts. GRO-seq involves a nuclear run-on experiment on a genome-wide scale, where engaged Pol II incorporates bromo-tagged nucleotides, and is followed by RNA isolation and deep sequencing [60].

  6.8.2 Divergent Transcription

  

  One of the phenomena observed using Global Run-On sequencing (GRO-seq) is that of divergent transcription [61]. Divergent transcription is characterized by nascent transcripts associated with both the sense and anti-sense strand of the gene.

  

  

  
    
      [image: GRO-seq identifies divergent transcriptions]
    
    Figure 6.9: GRO-seq can identify cases of divergent transcription, where nascent transcription is observed both sense and antisense to a genes TSS.

  

  6.9 Lab 7: RNA-seq

  

  The data for this project was taken from a paper by Kurasz et al., which describes a study of gene expression inSalmonella enterica serovar Typhimuriumand the effect of nucleic acid damage induced by mitomycin (MMC), which is a chemotherapy drug, and other compounds [62]. We will look at the MMC data in this project. I’m assuming you’re working in a new directory called [image: \texttt{Lab7}].
 Due to the large amount of data generated, I have some streamlined versions of these files to make it possible to complete this lab in less than an hour.

  6.9.1 Step 1: Download the genome and build a hisat2 index

  

  First thing we should do is download the genome for Salmonella. For reference, I found this by searching NCBI in the “Assembly” section and found this link here: https://www.ncbi.nlm.nih.gov/assembly/?term=Salmonella+Typhimurium. I renamed the file and made it available at this link:

 $ wget http://hendrixlab.cgrb.oregonstate.edu/teaching/salmonella_genome.fasta

  

  Next, we should build a [image: \texttt{hisat2}] index with the following command:

 $ hisat2-build salmonella_genome.fasta sal

  

  In this command, I have used the filebase “sal”, which is specified as the second argument to [image: \texttt{hisat2}] above, but you could call it what you want and change the subsequent commands accordingly. Note that several files are created as a result:

 $ ls sal.*
 sal.1.ht2 sal.2.ht2 sal.3.ht2 sal.4.ht2 sal.5.ht2 sal.6.ht2 sal.7.ht2 sal.8.ht2
 

  6.9.2 Step 2: Download the FASTQ files and align with hisat2

  

  First, we will download the FASTQ file. I found this experiment on GEO here: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE82167}. As a side note, what I did was go to the “Samples” section, expanded that section, clicked the links to find the “SRR…” IDs for samples. I ran a command like this (but please don’t run this because the original files are too big!):

 $ ~/sratoolkit.2.9.4-centos_linux64/bin/fastq-dump -A SRR3621123 >& SRR3621123.err
 $ ~/sratoolkit.2.9.4-centos_linux64/bin/fastq-dump -A SRR3621125 >& SRR3621125.err

  

  These commands assume you have installed the SRA toolkit in your home directory, and are using version 2.9.4, and are using CentOS; please alter these as needed. To make this more feasible in class, I have created the following shortened version of the resulting files:

 $ wget http://hendrixlab.cgrb.oregonstate.edu/teaching/salmonella_ctrl.fastq
 $ wget http://hendrixlab.cgrb.oregonstate.edu/teaching/salmonella_MMC.fastq

  

  Question: How many lines are in these files and how many reads does it have?

  

  We might want to quality trim these files, as well as remove any potential adapters. You can trim the files with [image: \texttt{skewer}] using the commands:

 $ skewer -x AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -q 30 -Q 30 salmonella_ctrl.fastq -o salmonella_ctrl
 $ skewer -x AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -q 30 -Q 30 salmonella_MMC.fastq -o salmonella_MMC

  

  For this command, it is requiring a PHRED score of 30 for both the 3′ end as well as the average score. Meaning, nucleotides will be removed from the 3′ end if they are lower quality than 30, and will discard reads with an average score less than 30.

  The alignment itself is done with [image: \texttt{hisat2}] using mostly default options to create a SAM file as the output.

 $ hisat2 -x sal -U salmonella_ctrl-trimmed.fastq -S salmonella_ctrl.sam
 $ hisat2 -x sal -U salmonella_MMC-trimmed.fastq -S salmonella_MMC.sam
 

  6.9.3 Step 3: Convert SAM to BAM, sort, and index the files

  In order for cuffdiff to run properly, we need to sort and index the files. SAM will work actually, but it needs to be sorted. Perhaps the easiest and fastest thing is do do this with samtools, which is like a “Swiss Army knife” for SAM and BAM files. First, convert to BAM using samtools

 $ samtools view -b -S -o salmonella_ctrl.bam salmonella_ctrl.sam
 $ samtools view -b -S -o salmonella_MMC.bam salmonella_MMC.sam

  

  Next, we sort and index these files:

 $ samtools sort salmonella_ctrl.bam salmonella_ctrl.sort
 $ samtools index salmonella_ctrl.sort.bam
 $ samtools sort salmonella_MMC.bam salmonella_MMC.sort
 $ samtools index salmonella_MMC.sort.bam
 

  6.9.4 Step 4: Identify differentially expressed genes with Cuffdiff.

  To do this, you’ll need to download the GFF file for the organism.

 $ wget http://hendrixlab.cgrb.oregonstate.edu/teaching/salmonella.gff

  

  Please read more information on the options of cuffdiff, check here: http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/index.html. We are going to run a basic version here, and the only option we are setting is to create a label for the output file columns with meaningful labels.

 $ cuffdiff -L WT,MMC salmonella.gff salmonella_ctrl.sort.bam salmonella_MMC.sort.bam

  

  Do you find any differentially expressed genes? These will correspond to those significant at an FDR of 0.05, by default. They make this easy to putting a “yes” on the last column for genes that are significant.

 $ grep yes gene_exp.diff

  

  Do these genes make sense given the paper, and can you find information about their function at NCBI?

  You can look for enriched functional annotations using the “GO Enrichment” tool at http://geneontology.org/. GO Terms are part of a controlled vocabulary for gene functions. Salmonella is an available organism on this page, which enables us to study gene enrichment associated with the differentially expressed genes from this experiment. By extracting the gene IDs, you could paste them into this GO Enrichment tool, and compute enriched functional categories.

  





  
  





Chapter 8: Proteins



  
  

  Many transcripts encode Proteins, which are sequences of amino acids that fold into specific structures responsible for their functions. To a great extent, the sequence of the protein determines its structure, which in turn determines its function. Therefore, identifying similar protein sequences can suggest structures and functions. The field of protein bioinformatics is certainly extensive, and we will only be able to cover a small portion to introduce some concepts that may be useful.

  To go from mRNA to protein, we need an open reading frame (ORF) defined by a start codon in frame with a stop codon. Typical mRNAs have many possible ORFs, with other signals, such as the Kozak sequence, determining which ORF is used. In most cases, the longest ORF is the coding DNA sequence (CDS), or the region that is actually translated. In general it is important to distinguish ORFs, which are quite common, from the CDS.

  Once we have the CDS sequence, it is easy to compute the corresponding peptide sequence with Biopython, as we have seen in section 1.2.2.

  8.1 Protein Alignment

  

  Our previous discussion of alignment applies to proteins as well as nucleic acid sequences. However, with 20 amino acids, our scoring system can be updated to account for chemical similarity, and the fact that some amino acids are more likely to mutated to others.
 Typically, when aligning two sequences, the assumption is that the two sequences have a common evolutionary origin, and the association between single characters in the alignment correspond to the evolutionary history of those characters. In order to optimize such an alignment, we need to define a scoring system used to compare two characters.

  Let’s define some probabilistic models of sequence alignments so that we can describe the scoring system with such a formalism. Much of what we will describe here was developed for protein sequences, but the formalism could be used more generally. First, let’s formulate the probability of the two sequences given a random model. That is, the two sequences are just two random strings of characters that have been independently generated from a generative probabilistic model.

  Consider an ungapped alignment of the sequences [image: x] and [image: y]:

 x[1]x[2]x[3]x[4] ... x[n]
 | | | | |
 y[1]y[2]y[3]y[4] ... y[n]

  

  Let’s work out a scoring system for this, and then later introduce gaps.
 For a random model, each of the characters [image: x[i]] and [image: y[i]] at each position [image: i] is just randomly selected according to their frequency in the database

  

  
    [image: P(x,y|Random) = \prod_{i=1}^n p_{x[i]} p_{y[I]}]
  

  

  Alternatively, if the sequences have a common ancestor, we could also define a probability [image: q_{a,b}] as describing the frequency of occurrence of substitutions in the database between two characters [image: a] and [image: b].

  

  
    [image: P(x,y|Ancestor) = \prod_{i=1}^n q_{x[i],y[I]}]
  

  

  If we combine our two probabilistic models, we can compute a odds ratio

  

  
    [image: \frac{P(x,y|Ancestor)}{P(x,y|Random)} = \frac{\prod_{i=1}^n q_{x[i],y[i]}}{\prod_{i=1}^n p_{x[i]} p_{y[i]}}]
  

  

  and by taking a logarithm, we can define a score as a log-odds ratio, which is more convenient for our purpose because it turns the product into a sum

  

  
    [image: S = \log \left( \frac{P(x,y|Ancestor)}{P(x,y|Random)} \right) = \log \left(\frac{\prod_{i=1}^n q_{x[i],y[i]}}{\prod_{i=1}^n p_{x[i]} p_{y[i]}} \right) = \sum_{i=1}^n \log \left( \frac{q_{x[i],y[i]}}{p_{x[i]} p_{y[i]}} \right)]
  

  

  The last terms give us our similarity matrix terms [image: S_{a,b}] defined as

  

  
    [image: S_{a,b} = \log \left( \frac{q_{a,b}}{p_a p_b} \right)]
  

  8.1.1 PAM Matrices

  

  A Point Accepted Mutation Matrix (PAM Matrix), is was the first systematically defined matrix for scoring the similarity of peptide sequences. This scoring system was created by Margaret Dayhoff in 1978 [80]. First we define a “Mutation Matrix” [image: M] that describes the probability of mutating from [image: a] to [image: b].

  

  
    [image: M_{ab} = P(a \rightarrow b)]
  

  

  The Mutation matrix is time reversible, meaning

  

  
    [image: P(a)M_{ab} = P(b)M_{ba}]
  

  

  Under such a time-reversible model, the observed frequency of [image: a] mutating to [image: b] is equal to the observed frequency of [image: b] mutating to [image: a]. This is a common assumption, particularly because we can’t observe, and can only infer, which character is ancestral. We will see below that we can compute the most likely or most parsimonious ancestral character, but the databases that were originally used to build these scoring matrices just used alignments; hence, we can only observe substitutions.
 If our database has [image: n_a] occurrences of amino acid [image: a], then we define our normalized frequency [image: p_a] of that amino acid as

  

  
    [image: p_a = \frac{n_a}{N}]
  

  

  where [image: N] is the total number of amino acids in the database. Because [image: \sum_a n_a = N], the probabilities [image: p_a] are normalized.

  We can’t measure how much time has transpired between mutations in the sequences of our database. Therefore, we have to talk about how many substitutions have taken place as a percentage.
 These mutation matrices are scaled such that there is [image: 1%] amino acid change:

  

  
    [image: \sum_{a=1}^{20} p_a M_{aa} = 0.99]
  

  

  Therefore, this equation scales the mutation rates, and gives us restrictions on the protein alignments that we can consider in our database.
 The actual PAM matrix that is used in scoring is defined as

  

  
    [image: PAM_1(a,b) = \log \left( \frac{p_a M_{a,b}}{p_a p_b} \right) = \log \left( \frac{M_{a,b}}{p_b } \right)]
  

  

  To get more distant relationships, we can raise the matrix [image: M = M^{(1)}] to a power.

  

  
    [image: M^{(n)} = \left( M^{(1)} \right)^n]
  

  

  Consider [image: M^2]:
 The result of this matrix product gives the probability of mutating from [image: a] to [image: c] in twice the amount of time defined by the matrix [image: M], and considering all intermediate amino acids [image: b].

  

  
    [image: M_{ac} = \sum_{b} M_{ab} M_{bc} = \sum_b P(a \rightarrow b) P(b \rightarrow c)]
  

  

  PAM matrices of a higher order, are then defined by taking the log of this higher-order power of the original PAM matrix.

  

  
    [image: PAM_n(a,b) = \log \left( \frac{p_a M^{(n)}_{a,b}}{p_a p_b} \right) = \log \left( \frac{M^{(n)}_{a,b}}{p_b } \right)]
  

  

  Therefore, the larger [image: n] is, it describes more distant homology. For example, [image: PAM_{250}] is an option in NCBI BLAST to specify more distance relationships.

  8.1.2 BLOSUM Matrices

  Another very common set of protein substitution matrices is BLOSUM [81]. BLOSUM is actually a series of matrices BLOSUM-x, where they are built from alignments that are at least [image: x\%] identical.
 These alignments come from the Blocks Database , which is still available at [image: \texttt{http://blocks.fhcrc.org}].
 Consider a single column of one of these Block alignments

  	[image: \texttt{...L...}] 
 	[image: \texttt{...L...}] 
 	[image: \texttt{...L...}] 
 	[image: \texttt{...I...}] 
 	[image: \texttt{...I...}] 
 	[image: \texttt{...V...}] 
 	[image: \texttt{...V...}] 
  

  In this example, there are 3[image: \texttt{L}], 2 [image: \texttt{I}]s, and 2 [image: \texttt{V}]s. We wish to compute the number of pairs [image: f_{ij}] for each pair of amino acids [image: i] and [image: j]. When the amino acid is the same, for example [image: f_{LL}] is the number of pairs that can be selected from [image: n_L] items, or [image: { n_L \choose 2}], where [image: n_L] is the number of occurrences of the amino acid [image: \texttt{L}]. This expression can be expanded in terms of factorials as follows.

  

  

  
    [image: { n_L \choose 2} = \frac{n_L!}{2! (n_L - 2)!}]
  

  (8.1)

  

  When the amino acids are different, such as [image: f_{IL}], the value is computed as the product of the number of occurrences of each amino acid, like [image: f_{IL} = n_L \times n_I = 3 \times 2 = 6]. To avoid double counting, we can only consider cases when latex i \le j$.
 These frequencies are normalized to make a [image: q_{ij}] matrix, with terms defined as

  

  

  
    [image: q_{ij} = \frac{f_{ij}}{\sum_{i=1}^{20} \sum_{j=i}^{20} f_{ij}}]
  

  

  Where the second sum in the denominator just goes up to [image: i] to count half of the symmetric matrix [image: f_{ij}] to avoid double-counting pairs.
 We can get the normalized frequencies of each animo acid from these quantities by

  

  
    [image: p_i = q_{ii} + \frac{1}{2} \sum_{j \ne i} q_{ij}]
  

  

  where the [image: 1/2] term is because there is a probability of [image: 1/2] that a random amino acid selected from the pairs corresponding to the [image: q_{ij}] pairs is [image: i]. Next we want to compute the probability [image: e_{ij}] of selecting the amino acids [image: i] and [image: j] by random.

  

  
    [image: e_{ij} = \begin{cases} p_i p_j, & \text{if } i=j \\ p_i p_j+p_j p_i = 2 p_i p_j, & \text{if } i \ne j \end{cases}]
  

  

  To understand this equation, imagine selecting a pair of amino acids at random from the database. If they are the same, then the probability of that happening is just [image: p_i p_i = p_i^2]. If they are different, then there are two ways that could be selected: first [image: i] then [image: j], and first [image: j] then [image: i]. Finally, the BLOSUM matrix would be computed as a log-likelihood ratio

  

  
    [image: S_{i,j} = \log \left( \frac{q_{ij}}{e_{ij}} \right)]
  

  

  In practice, the values for the BLOSUM matrices are rounded to integers because when they were created computer memory and computation was expensive, and this required less space than storing decimals and performing floating point arithmetic.

  8.1.3 Karlin and Altschul Generalization

  Karlin and Altschul formulated a generalized scoring matrix that is similar to both PAM matrices and BLOSUM matrices, defined as

  

  
    [image: S_{i,j} = \left( \frac{1}{\lambda} \right) \ln \left( \frac{q_{i,j}}{p_i p_j} \right)]
  

  

  where [image: \lambda] is a positive parameter that scales the matrix [82].

  8.1.4 Biopython and Substitution Matrices

  

  We can access values of a given substitution matrix using Biopython and the module [image: \texttt{Bio.SubsMat}]. For example, the most commonly used substitution matrix and the default for NCBI protein BLAST is BLOSUM62. We can print the values of the matrix or access a particular term by the following

 >>> from Bio.SubsMat import MatrixInfo
 >>> S = MatrixInfo.blosum62
 >>> S['Q','Q']
 5
 >>> S['W','Q']
 -2

  

  If you play around with this matrix (actually it is a dictionary that takes a pair of characters as keys) you will realize that some pairs are stored, but others are not and return errors when one tries to access them. For example, [image: \texttt{S['W','Q']}] is stored, but not [image: \texttt{S['Q','W']}]. To get around this, an additional function can be created:

 >>> def getScore(a,b,S):
 ...if (a,b) not in S:
 ...return S[b,a]
 ...return S[a,b]
 ...
 >>> getScore('Q','W',S)
 -2
 

  8.2 Functional Annotation of Proteins

  

  Computational methods can be used to infer protein function when a new protein is identified, but even if the inference is very strong, experiments still need to be done to validate the prediction. That said, there are many ways in which a hypothesis about protein function can be inferred, including sequence homology, sequence motifs such as “domains”, which could be considered a type of homology, structure-based function prediction, genomic co-location (gene clusters), gene expression data, in particular co-expression.

  8.2.1 Protein Evolution and Homology

  

  The first method that one might use to infer protein function is by sequence homology. Frequently, the more fundamental molecular functions of proteins are very well conserved. There are a number of mechanisms of protein evolution that one must consider when evaluating protein homology.

  In DNA replication, there are often errors that cause major changes in proteins, which can be highly disruptive to the function of the protein, but perhaps in some cases may confer new function. First, is the event of gene fusion, where two genes may be merged into one gene, combining different functional regions from the two ancestral genes. For example, a gene encoding a protein with a DNA-binding domain could fuse with a gene encoding a protein with a protein-binding domain, producing a new gene encoding a protein with both domains. In many cases, a gene fusion event is caused by a chromosomal translocation event, but such translocations can also cause other mutations in genes, such as loss of a portion of a gene. In addition, regions of chromosomes can be inverted during replication, resulting in gene fusions or deletions of portions of genes. Along the same lines, a chromosomal deletion, where a portion of a chromosome is deleted during DNA replication, can also lead to gene fusion events or loss of a portion of a gene.

  Gene duplication events can happen as part of a chromosomal duplication, or as part of a local duplication. When this happens, multiple copies of a gene can be created. The two copies of the gene could be beneficial in some cases, or harmful in others. In these cases, one of the copies can be possibly silenced. When both copies remain, one of the copies can undergo less selective pressure, because the bulk of the work is carried out by one of them. In this case, the other copy can accumulate mutations over time, which could result in new function or a specialized function. This process where one copy accumulates mutations and ultimately carries out a specialized role is often called sub-functionalization of the protein [83, 84].

  8.2.2 Protein Domains

  

  A protein domain is a conserved part of the protein that has a distinct structure and function. Often domains occur as highly conserved blocks of conservation that can be clearly observed in a sequence alignment. Often distantly related genes have domains conserved beyond the rest of the gene. Domains also will fold and evolve independently of the rest of the protein, resulting in increased conservation over the domain region. The idea of a protein domain was introduced by Wetlaufer in 1973 through observing common stable units in X-ray crystallography studies [85].
 A protein domain can be understood as similar to a motif, although some databases have more complex representations when necessary to describe a more complex pattern. To identify protein domains, one needs a sufficiently diverged set of proteins in order to accumulate enough mutations outside the domain so that the domain itself can be identified. However, with a set of proteins that is too diverged, once could even lose the conservation of the domain.

  Many databases of protein domains exist, including Pfam, PANTHER, PROSITE, and Interpro.

  
    Pfam Database
  

  

  Pfam is a database of proteins, protein families [86], and domains, and is available at http://pfam.sanger.ac.uk. Pfam domains are a commonly used annotation of protein domains that are relatively easy to use.
 For example, one can use the program HMMer (pronounced “hammer”) to scan Pfam domains downloaded as an hmm file. The command would be something like this:

 $ hmmscan --domtblout domainTable.txt Pfam-A.hmm proteins.fasta

  

  To produce a table similar to a BLAST output with locations of matches, e-values, and p-values.

  8.3 Secondary Structure prediction

  

  To get a full view of a protein’s structure, we’ll need a way to compute its tertiary structure, which is extremely difficult. In practice, we have to rely on experimental evidence such as X-ray crystallographic studies or NMR structures. Some studies will use a known structure of a protein and apply it to a homologous protein. Secondary structure for proteins can be computed, however, with reasonable accuracy. The secondary structure of a protein is a list of the positions corresponding to alpha helices and beta strands.
 The software [image: \texttt{jnet}] can predict secondary structural features and provide a confidence score for each position [87]. For example, the program [image: \texttt{jnet}] can be run on the command line with a command like:

  

  
    $ jnet -p human_catalase.fasta
  

  

  to produce an output file indicating the locations of these regions:

 Length = 527 Homologues = 1
 RES : MADSRDPASDQMQHWKEQRAAQKADVLTTGAGNPVGDKLNVITVGPRGPLLVQDVVFTDEMAHFD
 ALIGN : ---------HHHHHHHHHHHHHH--EEE---------EEEEEEE-----EEEEEEEE-----H--
 CONF : 88888887525778889988874122440687775752678883477752575455201000013
 FINAL : ---------HHHHHHHHHHHHHH--EEE---------EEEEEEE-----EEEEEEEE--------

  

  where the [image: \texttt{CONF}] value is the confidence, a number from [image: 0] to [image: 9], that indicates the quality of the prediction. In this representation, the [image: \texttt{H}s] represent alpha helices, and the [image: \texttt{E}s] indicate beta-strands. Here we have run the program with one protein sequence, but it could be run with multiple sequences for greater accuracy.

  8.4 Gene Ontology

  

  Gene Ontology (GO) is a database of controlled vocabulary terms that describe gene/protein function [88]. A valuable web resource for GO terms and related data is available at their website (http://geneontology.org). These terms form a hierarchy, where certain higher-level terms “contain” the lower-level terms in conceptual scope.

  

  
    
      [image: Terms organized by concepts]
    
    Figure 8.1: GO Terms are organized into a hierarchy of concepts, with the lower terms representing more refined functions.

  

  

  There are many levels of evidence for the assignment of a GO term, indicated by “evidence codes”, given by a symbol of a few letters. For example, [image: \texttt{EXP}] indicates that the term was “Inferred by experiment” Others such as [image: \texttt{TAS}] for “traceable author statement” indicate that there is a statement in a publication making the claim of the association.

  Table 8.1: Table of some GO term evidence codes and their meaning. 	TAS 	Traceable Author Statement 
 	EXP 	Inferred from Experiment 
 	IDA 	Inferred from Direct assay 
 	IPI 	Inferred from Physical Interaction 
 	IMP 	Inferred from Mutant Phenotype 
 	IGI 	Inferred from Genetic Interaction 
 	IEP 	Inferred from Expression Pattern 
 	ISS 	Inferred from Sequence or Structural Similarity 
 	ISO 	Inferred from Sequence Othology 
  

  
    
      [image: A directed acyclic graph for GO Terms]
    
    Figure 8.2: GO Terms are organized as a directed acyclic graph (DAG), which can connect nodes lower in the graph, but does not contain cycles linking back up further up the tree.

  

  8.4.1 Multiple hypothesis testing

  

  Frequently when performing a study on the effect of a mutation or other treatment, one looks at the GO terms of the genes that are significantly differentially expressed due to the experimental condition compared to a control. One evaluates whether the enrichment of a particular GO term in the data exceeds that of the expected rate of this term occurring in randomly sampled gene sets of the same size. This significance is typically computed from a p-value describing the enrichment.

  However, in doing so, one needs to perform a multiple test correction, to account for the fact that many hypotheses were tested. For example, if you found a one-in-a-million event after examining one million events, you might not be surprised. The simplest multiple-test correction is the Bonferroni correction [89], where when testing [image: N] hypotheses, we need to test for significance at level [image: \alpha] by examples satisfying the relationship:

  
    [image: p N \le \alpha]
  

  (8.2)

  

  Another method is the Benjamini-Hochberg procedure, which is a little bit more complex [90]. To do this procedure, one needs to sort the list of p-values [image: {p_1,p_2,...,p_N}] in ascending order such that [image: p_{(1)} \le p_{(2)} \le ... \le p_{(N)}] such that the subscript given by [image: p_{(r)}] indicates the p-value with rank [image: r]. This procedure gives us a list of significant hypotheses with a rate of false-discovery defined by the imposed [image: FDR], a number between [image: 0] and [image: 1]. After the sorting, all p-values with a rank [image: r] less than the maximum rank [image: r^*] such that:

  

  
    [image: \frac{p_{(r^*)} N}{r^*} \le FDR,]
  

  (8.3)

  

  where [image: FDR] defines the false discovery rate, are deemed significant.

  

  
    
      [image: Graph showing how p-values are determined by the largest rank r]
    
    Figure 8.3: Significant p-values are determined by the largest rank [image: r^*] such that [image: \frac{Np_{(r)}}{r}\lt\alpha]. Note that while the p-value is sorted so that it is monotonically increasing as a function of [image: r], the term [image: \frac{Np_{(r)}}{r}] is not necessarily always increasing.

  

  8.5 Lab 9: Proteins

  In this lab, we learn some methods for predicting properties of protein sequences, such as domains and secondary structure.

  8.5.1 Scanning for domains

  First, let’s look at protein domains from Pfam. First, we’ll need to download a domain file from Pfam with the following command:

 $ wget ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/Pfam-A.hmm.gz}

  

  This file contains a set of HMM models for protein domains defined for the Pfam database. To use this file, we must first unzip the file with gunzip.

 $ gunzip Pfam-A.hmm.gz

  

  This will produce the unzipped file [image: \texttt{Pfam-A.hmm}], which can be used to scan for these domains using the HMMer software program hmmscan as part of the HMMer package. However, we still need to index this [image: \texttt{.hmm}] domain file. This can be done with the HMMer software.

 $ hmmpress Pfam-A.hmm

  

  As we have seen in this course, there are many ways to download a protein sequence. Since we will work on protein secondary structure prediction, let’s consider downloading something from PDB, the Protein Databank.
 The PDZ domain is a structural domain involved in signaling in many organisms ranging from bacteria to animals. The structure consists of roughly 5 beta-strands and 2 alpha-helices, as demonstrated by this image of the tertiary structure [91].

  
    
      [image: A tertiary structure]
    
    Figure 8.4: Tertiary structure image created using WebGL at http://www.rcsb.org/3d-view/2NB4/1

  

  You can see more detail on this structure at PDB (http://www.rcsb.org/3d-view/2NB4/1). One useful piece of data in this database entry is the secondary structure information found at the PDB database here: http://www.rcsb.org/pdb/explore/remediatedSequence.do?structureId=2NB4.
 The sequence can be obtained in the upper-right hand corner of the PDB database page under “Download Files” and then under “FASTA sequence”. Here is the PDZ domain sequence:

 >2NB4
 PLTRPYLGFRVAVGRDSSGCTTLSIQEVTQTYTGSNG
 GADLMGPAFAAGLRVGDQLVRFAGYTVTELAAFNTVV
 ARHVRPSASIPVVFSRDGVVMSATIVVGELE

  

  Download the FASTA file here PDZ sequences and compute a multiple sequence alignment for the sequences to see if it improves the domain identification.
 Now we can save this sequence to a file called [image: \texttt{pdz.fasta}]. We can then run [image: \texttt{hmmscan}] to see if there are any domains in this sequence:

 $ hmmscan --domtblout domains_2NB4.txt Pfam-A.hmm pdz.fasta

  

  Does this output make sense? you can view it with the following command, using “less -S” to turn off word-wrapping.

 $ less -S domains_2NB4.txt

  

  The first few columns define which domain was found. As expected the only domains are PDZ. What is unexpected, perhaps, is the positions of the two Pfam domains pertaining to PDZ (defined by the “ali coord” entry and “from” and “to” columns.) don’t always start at the same position, suggesting that to some degree the boundaries are a bit “fuzzy” at times.

  Also, note that another column provides the e-value, which is interpreted similarly to BLAST, as the expected number of occurrences of this domain by chance
 The secondary structure of the protein can be computed with the following command:

 $ jnet -p pdz.fasta

  

  This produces a file format that gives the sequence and a letter designation for whether the region is an alpha-helix, designated by an “H”, or a beta-strand, designated by an “E”. How closely does the predicted structure correspond to the true structure seen here: https://www.rcsb.org/pdb/explore/remediatedSequence.do?structureId=2NB4?

  You can run this program on an alignment, but you need to remove gaps from the multiple sequence alignment. To do this, first compute an alignment. I used the PDZ file above

 $ clustalw2 -infile=PDZ_sequences.fasta -type=Protein -outfile=PDZ_sequences.aln

  

  Next, you need to convert to FASTA alignment format and remove gaps. You can covert to FASTA using AlignIO (see Lab 5, section 4.4), but this will not remove gaps. To remove gaps, very industrious students might try to write a python script to do this. Note that you need to remove gaps a column of the alignment. Meaning, if one sequence has a gap, that specific position of the alignment would be removed for all sequences. Alternatively, you an use the program [image: \texttt{trimal}] to do this. You can remove the gaps and convert to FASTA in one step:

 $ trimal -in PDZ_sequences.aln -fasta -nogaps > PDZ_sequences.fa

  

  Next, you can run [image: \texttt{jnet}] on the resulting alignment:

 $ jnet -p PDZ_sequences.fa

  

  The problem here is whether or not the alignment with gaps removed is informative. If your sequences are too far away, a lot of gaps could be removed, rendering the positions of the resulting gap-free alignment different from the original sequences.

  





  
  





Chapter 3: Sequence Alignments



  
  Biological sequences evolve through a process of mutation and natural selection. By comparing two sequences, we can determine whether two sequences have a common evolutionary origin if their similarity is unlikely to be due to chance. Before we get into how this is done, we must also consider that there are many types of evolutionary relationships among sequences.

  First, there is similarity, which fits the intuitive meaning of the degree of resemblance between two sequences. We might use the termidentityto refere more exact situations, such the state of possessing the same subsequence. One often quantifies the percent identity between two sequences. The term homologyrefers to the state of sharing a common evolutionary origin. We say two sequences are homologous if they have a common ancestor. There are two types of homology. First, orthologyrefers to the state of being homologous sequences that arose from a common ancestral gene during speciation. Second, paralogyrefers to the state of being homologous sequences that arose from a common ancestral gene from gene duplication.

  Sequence alignment is the process of arranging the characters of a pair of sequences such that the number of matched characters is maximized. We can describe the alignment between two sequences with the following notation:

 GCGTAACACGTGCG--
 | ||| ||||||
 AC--AACCCGTGCGAC

  

  The vertical bars [image: \texttt{"|"}], or pipes, represent matching characters. Gaps, indicated by the dash [image: \texttt{"-"}] are inserted in between characters in place of missing characters to optimize the number of matches. It is critical that sequence alignments are viewed in a monospace font, such as Courier, so that the width of characters don’t offset the alignment.

  3.1 Alignment Algorithms and Dynamic Programming

  

  One of the first attempts to align two sequences was carried out by Vladimir Levenstein in 1965, called “edit distance”, and now is often called Levenshtein Distance. The edit distance is defined as the number of single character edits necessary” to change one word to another. Initially, he described written texts and words, but this method was later applied to biological sequences. One of the most commonly used algorithms for computing the edit distance is the Wagner-Fischer algorithm, a Dynamic Programming algorithm.

  Dynamic Programming optimally phrases the full problem as the optimal solution to the smaller pieces (sub-problems). The overall problem can then be expressed as a composition of the sub-problems. In addition to the Wagner-Fischer algorithm, numerous other dynamic programming algorithms have been developed for aligning biological sequences including the Needleman-Wunsch [22]and Smith-Waterman Algorithms [23].

  3.1.1 Needleman-Wunsch Algorithm

  

  The Needleman-Wunsch Algorithm is a global alignment algorithm, meaning the result always aligns the entire input sequences [22]. Later on in section 8.1we will define a scoring matrix for protein alignment, but for nucleotide sequences, we often use a simpler scoring matrix such as

  
    
    

    [image: \begin{aligned} S_{a,b} = \begin{cases} 1, & \text{if } a=b \\ -1, & \text{if } a \ne b \end{cases} \end{aligned}]
  

  (3.1)

  

  In addition to a scoring matrix, we also need to define penalties for gaps. The most common gap penalty is the linear gap penalty, defined as

  

  
    [image: c_L(d) = G d,]
  

  

  which is just proportional to the length [image: d] of the gap by a parameter [image: G \lt 0]. A more complicated approach is an “affine gap penalty”, which penalizes opening a gap by one parameter, and extending the gap by another parameter. For example, such a gap penalty can by defined by

  

  
    [image: c_A(d) = G + (d-1) E]
  

  

  which includes a gap open parameter [image: G] and a gap extension parameter [image: E]. In practice, an affine gap penalty is much more difficult to compute.

  Dynamic programming for sequence alignments begins by defining a matrix or a table, to compute the scores. For example, let’s consider aligning the nucleotide sequences [image: x = \texttt{CAGCTAGCG}] and [image: y = \texttt{CCATACGA}]. For Needleman-Wunsch, let’s define a matrix [image: F], such that the terms [image: F_{i,j}] correspond to the score of aligning the subsequences [image: x[1..i]] and [image: y[1..j]]. We proceed from the upper left of this matrix at [image: F_{0,0}], and fill in the matrix as we move from left to right and from top to bottom. Here the rows of [image: F] will correspond to the positions of [image: x], and the columns will correspond to the positions of [image: y].

  When computing the terms of the matrix [image: F], we need to define a set of boundary conditions, namely that the score at the boundaries is associated with the penalty all the way up to that position. This is achieved by setting [image: F_{i,0} = i \times G] and [image: F_{0,j} = j \times G] for [image: 1 \le i \le |x|] and [image: 1 \le j \le |y|].

  We compute the terms of the matrix [image: F] using a “recurrence relation”, such that the terms of a given cell of the matrix [image: F] are defined in terms of the neighboring cells. Needleman-Wunsch uses the following recurrence relation:

  

  [image: \begin{aligned} F_{i,j} = max \begin{cases} F_{i-1,j} + G& \mbox{skip a position of }x\\ F_{i,j-1} + G& \mbox{skip a position of }y\\ F_{i-1,j-1} + S_{x[i],y[j]} & \mbox{match/mismatch}\\ \end{cases} \end{aligned}]

  (3.2)

  

  Let’s consider the result of computing the matrix [image: F] using the scoring matrix in 3.1, and using a linear gap penalty [image: G=-1]. The result is presented in Table 3.1.1. In this matrix, each term then corresponds to the score up to the character at that [image: i] and [image: j] position of the sequences [image: x] and [image: y] respectively. The rows will correspond to positions [image: i] in the sequence [image: x], and the columns will correspond to positions [image: j] of [image: y].

  
    
      [image: Shows how each term of the matrix is being computed using equation 3.2, from the term above, left, and diagonally.]
    
    Figure 3.1: Each term of the matrix is computed using Equation 3.2from the term above, to the left, and diagonally above-left.

  

  The terms [image: F_{ij}] of the matrix [image: F] can be filled out as is done with the following matrix, with each cell computed using the recursion relation in Equation 3.2, as depicted in Figure 3.1. The optimal path is shown in blue.


  Table 3.1: A dynamic programming matrix to compute the score for Needleman-Wunsch Alignment. 	 	– 	C 	C 	A 	T 	A 	C 	G 	A 
 	– 	0 	-1 	-2 	-3 	-4 	-5 	-6 	-7 	-8 
 	C 	-1 	1 	0 	-1 	-2 	-3 	-4 	-5 	-6 
 	A 	-2 	0 	0 	1 	0 	-1 	-2 	-3 	-4 
 	G 	-3 	-1 	-1 	0 	0 	-1 	-2 	-1 	-2 
 	C 	-4 	-2 	0 	-1 	-1 	-1 	0 	-1 	-2 
 	T 	-5 	-3 	-1 	-1 	0 	-1 	-1 	-1 	-2 
 	A 	-6 	-4 	-2 	0 	-1 	1 	0 	-1 	0 
 	G 	-7 	-5 	-3 	-1 	-1 	0 	0 	1 	0 
 	C 	-8 	-6 	-4 	-2 	-2 	-1 	1 	0 	0 
 	G 	-9 	-7 	-5 	-3 	-3 	-2 	0 	2 	1 
  

  In addition to the [image: F] matrix, it is common to keep track of a traceback matrix [image: T], that keeps track of from where each term was computed from, in other words the maximum term in Eq 3.2. Table 3.1.1demonstrates such a traceback matrix. One key complication is dealing with ties. One strategy is to favor adjacent matched characters as much as possible; therefore, we would favor diagonal terms before above or to the left.

  Table 3.2: A traceback matriculates for Needleman-Wunsch. 	 	– 	C 	C 	A 	T 	A 	C 	G 	A 
 	– 	· 	· 	· 	· 	· 	· 	· 	· 	· 
 	C 	· 	× 	↖ 	← 	← 	← 	↖ 	← 	← 
 	A 	· 	↑ 	↖ 	↖ 	← 	↖ 	← 	← 	↖ 
 	G 	· 	↑ 	↖ 	↑ 	↖ 	↖ 	↖ 	↖ 	← 
 	C 	· 	↖ 	↖ 	← 	↖ 	↖ 	↖ 	← 	↖ 
 	T 	· 	↑ 	↑ 	↖ 	↖ 	← 	↑ 	↖ 	↖ 
 	A 	· 	↑ 	↑ 	↖ 	← 	↖ 	← 	← 	↖ 
 	G 	· 	↑ 	↑ 	↑ 	↖ 	↑ 	↖ 	↖ 	← 
 	C 	· 	↖ 	↖ 	↑ 	↖ 	↑ 	↖ 	← 	↖ 
 	G 	 	↑ 	↑ 	↑ 	↖ 	↑ 	↑ 	↖ 	← 
  

  Finally, we have the result of the alignment. Here is the result of the Needleman-Wunsch alignment. Because it is a global alignment, the full sequence is included and the alignment ends on the first and last positions. There are, however, gaps at the first and last positions as this example illustrates.

  
    
 -CAGCTAGCG-
 || || ||
 CCA--TA-CGA
  

  3.1.2 Smith-Waterman

  n most applications we are only interested in aligning a small portion of the sequence to produce a local alignment. Furthermore, we don’t necessarily want to force the first and last residues to be aligned. Smith-Waterman is an alignment algorithm that has these properties [23].
 We can define a set of boundary conditions for the scoring matrix [image: F_{i,j}], namely that the score is [image: 0] at the boundaries so that [image: F_{i,0} = F_{0,j} = 0] for [image: 1 \le i \le |x|] and [image: 1 \le j \le |y|]. Define the recurrence relation:

  

  
    [image: \begin{aligned} F_{i,j} = max \begin{cases} F_{i-1,j} + G& \mbox{skip a position of }x\\ F_{i,j-1} + G& \mbox{skip a position of }y\\ F_{i-1,j-1} + S_{x[i],y[j]} & \mbox{match/mismatch}\\ 0 & \mbox{zero-out negative scores} \\ \end{cases} \end{aligned}]
  

  (3.3)

  

  In addition to the different boundary conditions, a key difference between Needleman-Wunsch (global alignment) and Smith-Waterman (local alignment) is that whereas with the global alignment we start tracing back from the lower right term of the matrix, for the local alignment we start at the maximum value. This value corresponds to the last matched character of the optimal alignment.

  Table 3.3: A matrix for Smith-Waterman, with an optimal path labeled in blue. 	 	– 	C 	C 	A 	T 	A 	C 	G 	A 
 	– 	0 	0 	0 	0 	0 	0 	0 	0 	0 
 	C 	0 	1 	1 	0 	0 	0 	1 	0 	0 
 	A 	0 	0 	0 	2 	1 	1 	0 	0 	1 
 	G 	0 	0 	0 	1 	1 	0 	0 	1 	0 
 	C 	0 	1 	1 	0 	0 	0 	1 	0 	0 
 	T 	0 	0 	0 	0 	1 	0 	0 	0 	0 
 	A 	0 	0 	0 	1 	0 	2 	1 	0 	1 
 	G 	0 	0 	0 	0 	0 	1 	1 	2 	1 
 	C 	0 	1 	1 	0 	0 	0 	2 	1 	1 
 	G 	0 	0 	0 	0 	0 	0 	1 	3 	2 
  

  The optimal score corresponds to the [image: 3] in the last row, but second to last column. The optimal path results in an alignment with four matching positions. The traceback matrix can be built while computing the alignment matrix, and all paths are halted when a score of zero is reached.

  Table 3.4: A traceback matrix for Smith-Waterman 	 	– 	C 	C 	A 	T 	A 	C 	G 	A 
 	– 	· 	· 	· 	· 	· 	· 	· 	· 	· 
 	C 	· 	↖ 	↖ 	← 	· 	· 	↖ 	← 	· 
 	A 	· 	↑ 	↖ 	↖ 	← 	↖ 	↑ 	↖ 	↖ 
 	G 	· 	· 	· 	↑ 	↖ 	↖ 	↖ 	↖ 	↑ 
 	C 	· 	↖ 	↖ 	↑ 	↖ 	↖ 	↖ 	↑ 	↖ 
 	T 	· 	↑ 	↖ 	↖ 	× 	← 	↑ 	↖ 	· 
 	A 	· 	· 	· 	↖ 	↑ 	↖ 	← 	← 	↖ 
 	G 	· 	· 	· 	↑ 	↖ 	↑ 	↖ 	↖ 	← 
 	C 	· 	↖ 	↖ 	← 	· 	↑ 	↖ 	↑ 	↖ 
 	G 	· 	↑ 	↖ 	↖ 	· 	· 	↑ 	↖ 	← 
  

  For Smith-Waterman, we typically report just the sub-alignment corresponding to the positive scores. We can report an alignment consisting of just the two sequences.

  
    
 TAGCG
 || ||
 TA-CG
  

  3.1.3 Comparison

  

  Although there are some similarities, there are a couple of key differences between Needleman-Wunsch and Smith-Waterman Algorithms. Here is a summary:

  
    Needleman-Wunsch Algorithm
  

  
    	Computes the optimalglobal alignmentin O(nm)

    	Backtracking begins in lower right: global adjustment

    	Allows negative scores

  

  
    Smith-Waterman Algorithm
  

  
    	Computes optimallocal alignmentin O(nm)

    	Backtracking begins at largest value (not necessarily lower right)

    	Negative scores are zeroed out

  

  3.1.4 Aligning DNA vs Proteins

  

  When performing sequence alignments it is important to realize some of the key differences between aligning nucleic acid sequences and aligning protein sequences. We’ve seen that proteins can have substitution matrices, such as BLOSUM and PAM, that incorporate probabilistic models. That said, in Chapter 4we will get into some probabilistic models of nucleotide substitution that could be incorporated into a scoring system. By building substitution matrices from curated alignments that record evolutionary changes that occur in nature, the protein substitution matrices encode the chemical similarity between amino acids. For example, scores are better for substituting between two polar amino acids compared to mutating from polar to non-polar. Furthermore, when inside the coding region of a gene, the third position of codons is more mutable because this position can typically change without changing the amino acid that it encodes.

  3.2 Alignment Software

  3.2.1 BLAST: Basic Local Alignment Search Tool

  

  The BLAST algorithm (Basic Local Alignment Search Tool) developed by Altschul (1990) combines indexing of a database of sequences, and heuristics to approximate Smith-Waterman alignment, but is [image: 50 \times] faster. The approach of BLAST is to index a search database using [image: K]-mers, subsequences of length [image: K], for each of the sequences in the database. A query sequence is input to the program to search for similar sequences in the database. After low-complexity sequences are removed, all [image: K]-mers of the query sequence are listed, and possible matches in the database are identified that would have an alignment score as good as [image: T], a predefined score threshold. The matching [image: K]-mers are extended into stretches of matching [image: K]-mers, that are called High-scoring Segment Pairs (HSPs), resulting in matches that are longer than [image: K]. Two or more of these HSPs are combined to form a longer alignment. Ultimately Smith-Waterman alignment is performed on just these strongly matching sequences, and this is what is reported.
 In summary, the approach is as follows:

  
    	Remove low0complexity regions or sequence repeats in the query sentence.

    	Make[image: K]-mer word list of the query sequence (Proteins often[image: K] = 3)

    	List the possible [image: 20^3] matching words with a scoring matrix

    	Reduce the list of word matches with thresholdT

    	Extend the exact matches to High-scoring Segment Pairs (HSPs)

    	List all HSPs and evaluate significance

    	Combine two or more HSPs into a longer alignment

    	Report the gapped Smith-Waterman local alignments of the query and each of the matched database sequences.

  

  

  
    
      [image: K-mer wordd list of the query sequence]
    
    Figure 3.2: Make [image: K]-mer word list of the query sequence (Proteins often [image: K=3])

  

  3.3 Alignment Statistics

  

  When evaluating a BLAST score, it is important to have a statistical framework for evaluating the significance of a “BLAST hit”. Here we present such a system where we consider our score [image: S] as a random variable. Because BLAST identifies the maximum scoring alignment, we can describe the cumulative distribution of BLAST scores with the Generalized Extreme Value (GEV) distribution:

  

  
    [image: P(S \le x) = \exp \left( - e^{-\lambda (x - u)}\right)]
  

  

  The parameter [image: u] is the location parameter of the GEV, and is expressed here in terms of the length [image: n] of the query sequence, and the length [image: m] of the entire database. [image: K] here is a constant that is particular to and computed from a particular database.

  

  

  
    
      [image: K-mers matching with R are extended forms of High-scoring Segment Pairs (HSPs)]
    
    Figure 3.3: [image: K]-mers that match with a score above [image: T] are extended form High-scoring Segment Pairs (HSPs).

  

  
    [image: u = \frac{\ln Knm}{\lambda}]
  

  

  The p-value is the probability of a score greater than or equal to S due to chance, and is given by:

  

  
    [image: P(S \ge x) = 1 - \exp \left( -Knme^{-\lambda x}\right)]
  

  

  This equation comes from the Poisson distribution. If we define E-value (expected number of hits at this score or greater due to chance) as:

  

  
    [image: E = Knme^{-\lambda S}]
  

  

  The p-value can then be simplified as:

  

  
    [image: P(S \ge x) = 1 - e^{-E}]
  

  

  After a linear transformation, the score S’ can be computed in terms of bits.

  

  
    [image: S' = \frac{\lambda S - \ln K}{\ln 2}]
  

  

  The updated equation for E-value is much simpler:

  

  
    [image: E = nm \times 2^{-S'}]
  

  

  
    [image: HSPs graphed by query sequence and database sequences]
    Figure 3.4: Extend the exact matches to High-scoring Segment Pairs (HSPs)

  

  3.3.1 Running BLAST from the command line

  

  BLAST can be run on the command line pretty easily. To do this, you need a sequence, or set of sequences to align, and a database to align to. First, let’s create the database to align to. This can be created using a FASTA file of sequences. For example, if we have the FASTA file for the human genome [image: \texttt{hg38.fa}], we can format the database with [image: \texttt{makeblastdb}] using the following command:

 $ makeblastdb -in hg38.fa -input_type fasta -title hg38 -dbtype nucl

  

  In this command, most of the terms make sense. The input file is [image: \texttt{hg38.fa}], the input file format is “fasta”, and the title used is [image: \texttt{hg38}]. The last term specifies that the input data is nucleic acid sequences.
 On some systems, an older version is installed using [image: \texttt{formatdb}]. With this program, the database can be created using this command:

 $ formatdb -p F -t hg38 -n hg38 -i hg38.fa

  

  In this command, the [image: \texttt{-p F}] command indicates that this is a nucleotide sequence, and not a protein sequence. Specifically, the [image: \texttt{-p}] specifies protein, and the [image: \texttt{F}] says that this is “false”, specifying that the input data is not protein. The second two commands give the database the title and name [image: \texttt{"hg38"}]. The name specified by the [image: \texttt{-n}] command provides a basename for the output files used in the database, and also gives a label to be used when referring to the database in BLAST. Finally, the [image: \texttt{-I}] command specifies the input file, which is the FASTA file for the genome.

  Next, we can run BLAST using the command [image: \texttt{blastall}]. This tool allows you to run different versions of BLAST, specified by the [image: \texttt{-p}] command. To run a nucleotide query against a nucleotide database, we use [image: \texttt{blastn}]. The full command is as follows:

 $ blastall -p blastn -i sequences.fa -d hg38 -o sequences_hg38_blast.txt

  

  Here we specify the input sequences, the query, with the [image: \texttt{-I}] command. Then we specify the database that we are aligning to, using the [image: \texttt{-d}] flag, referring to the database that we just created with [image: \texttt{formatdb}]. Finally, we specify an output file to write the results to, using the [image: \texttt{-o}] flag.

  3.4 Short Read Mapping

  

  The growth of high-throughput sequencing has led to a parallel growth of software applications for rapidly aligning short reads. Although BLAST was designed for fast alignment, these new tools are even faster for the alignment of short sequence reads. We will discuss these methods further in Chapter 9.

  3.5 Lab 4: Using BLAST on the command line

  

  In this lab, we will learn how to run BLAST on the command line. As usual, you should create and enter a [image: \texttt{Lab4}] directory.

  3.5.1 Part 1: BLASTing to a protein database

  

  Let’s first build a database. Please download the Swissprot database from NCBI with the following command:

 $ wget ftp://ftp.ncbi.nih.gov/blast/db/FASTA/swissprot.gz

  

  and then unzip the downloaded file with the following command:

 $ gunzip swissprot.gz

  

  Although there is no file extension, the file is a FASTA file. Let’s rename it so that we know it is a FASTA file.

 $ mv swissprot swissprot.fa

  

  Next, let’s build a database with the following command:

 $ makeblastdb -in swissprot.fa -input_type fasta -title swissprot -dbtype prot

  

  Not all of these options are required. Can you figure out which options are required by the help message printed with you run this command?
 
$ makeblastdb -help
 

  Download the protein sequence infomation for human BRCA1 and create a fasta file for the sequence (https://www.ncbi.nlm.nih.gov/protein/1698399?report=fasta). Save it to a file called [image: \texttt{brca1_pep.fa}]. Copy the sequence, and paste it into a file after opening it with nano:

  
$ nano brca1_pep.fasta
 

  To save with nano, type Ctrl-X, then type Y. Next, we can BLAST the brca1 pep.fasta file we created.

 $ blastp -query brca1_pep.fasta -db swissprot.fa > brca1_swissprot

  

  Do the top hits make sense to you? You can search NCBI Protein for some of the IDs.

 $ less brca1_swissprot

  

  What are the best hits? Do the order of the sequence hits make sense in terms of what you know of the biology?

  You can also BLAST the sequence to the “non-redundant” database “nr” by pasting it to the NCBI BLAST web tool: https://blast.ncbi.nlm.nih.gov/Blast.cg. Note that you could do theoretically do this by specifying “nr” for the database, but many servers don’t have this downloaded (it’s a very big file!).

  
    3.5.2 Biopython and BLAST (optional)
  

  

  You could also analyze your blast hits using Biopython. To do this, you need to set the output format to XML with the following command.

 $ blastp -query brca1_pep.fasta -db swissprot -outfmt 5 > brca1_swissprot.xml

  

  The XML can be difficult to read, but can be parsed easily. For example, you can print the alignment for each BLAST hit in the results with something like this:

 >>> from Bio.Blast import NCBIXML
 >>> result_handle = open("brca1_swissprot.xml")
 >>> blast_record = NCBIXML.read(result_handle)
 >>> for alignment in blast_record.alignments:
 ...for hsp in alignment.hsps:
 ...if hsp.expect < 1e-10:
 ...print('sequence:', alignment.title)
 ...print('length:', alignment.length)
 ...print('e value:', hsp.expect)
 ...print(hsp.query)
 ...print(hsp.match)
 ...print(hsp.sbjct)

  

  Variations on this method could allow one to parse the BLAST output file, and extract the alignments as well.

  
    3.5.3 Part 2: BLASTing to a genome
  

  

  UCSC provides a wealth of genomic resources. You can download the Drosphila genome version dm3 at this link: http://hgdownload.soe.ucsc.edu/goldenPath/dm3/bigZips/. Download [image: \texttt{chromFa.tar.gz}] with the command at the terminal:

 $ wget http://hgdownload.soe.ucsc.edu/goldenPath/dm3/bigZips/chromFa.tar.gz

  

  Unzip the file with the command:

 $ tar xvfz chromFa.tar.gz

  

  Combine all the chromosome FASTA files into one genome file:

 $ cat chr*fa > dm3.fa

  

  In this case, the asterisk is used as a wild-card, that specifies all files with anything between a [image: \texttt{"chr"}] and a [image: \texttt{".fa"}]. You can clean up the directory by moving the [image: \texttt{chr*fa}] files into a directory. First create the directory:

 $ mkdir genome

  

  Move the chromosome files into the directory with this command:

 $ mv chr*fa genome/.

  

  Build a blast database:

 $ makeblastdb -in dm3.fa -title dm3 -dbtype nucl

  

  Download the transcript sequence for human BRCA1 and create a FASTA file for the sequence NCBI human BRCA1 here: https://www.ncbi.nlm.nih.gov/nuccore/1147602?report=fasta.
 BLAST The sequence to the genome:

 $ blastn -query brca1.fa -db dm3.fa > brca1_dm3.blast

  

  Download the RefSeq mRNA annotations [image: \texttt{refMrna.fa.gz}] with the command at the terminal:

 $ wget http://hgdownload.soe.ucsc.edu/goldenPath/dm3/bigZips/refMrna.fa.gz

  

  gunzip the file with the command:

 $ gunzip refMrna.fa.gz

  

  Create a database for the RefSeq annotations:

 $ makeblastdb -in refMrna.fa -title refMrna -dbtype nucl

  

  BLAST The sequence to the refMrna database:

 $ blastn -query brca1.fa -db refMrna.fa > brca1_refMrna.blast

  

  Discussion questions: the difference between the two results? How do you explain the difference? What is chrUextra anyway? To answer this you should look at the BLAST output with “less” in the same way you looked at other BLAST output above.

  Going beyond: How does this e-value compare to BLASTing to mouse through the NCBI website? Can you find a gene in human that has a significant hit to the E. coli genome?

  





  
  



