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Preface

It has become almost a cliche to remark that nobody
boasts of ignorance of literature, but it is socially
acceptable to boast ignorance of science and proudly
claim incompetence in mathematics...

—Richard Dawkins

Why study mathematics?

Scientists and engineers are, by definition, problem solvers. But, it is curious to reflect on how they become
problem solvers. While it is possible that early in one’s academic career, a course whose title included
the words “problem solving” might have been taken, but this is not likely to have been where students
generally learn how to actually solve problems. The topic of how engineers and scientists learn what they
ultimately know is an area of research in education. While that question is much to broad to address here,
some comments about the use of mathematics in the education process is, however, within scope.

The refrain “But, when am I ever going to use this?” is a familiar one to anyone who has ever studied (or
taught) mathematics. It underscores a particular problem with the way in which mathematics is presented.
In studying, for example, poetry, it would be unusual to hear those studying the subject to exclaim “But
when am [ ever going to use this poem?”. The problem begins to be clear when examining thinking about
why mathematics is viewed as different than, say, poetry. There is often an expectation by learners that
mathematics should be useful in a very applied sense. This expectation is understandable because most
of our early mathematical training (e.g., learning to add, subtract, and multiply; solving basic algebraic
problems) has very obvious utility. It is usually at the point where higher levels of mathematical thinking
are introduced (e.g., formal linear algebra, calculus, differential equations) that the question of usefulness
arises.

Most of us study mathematics because it is useful. Few would argue that knowing how to add, subtract,
multiply, and divide are skills that are not useful. Similarly, few would argue, for example, that spreadsheets
are not useful; and spreadsheets are primarily a tool based in mathematical operations. Most engineers and
scientists have had the opportunity and need to apply the various rules of algebra to solve actual real-world
problems. So, there are subject areas for which the tools of mathematics are generally agreed to be useful.

One of the problems that occurs in the study of higher mathematics is that it is not made clear in what
sense it is useful. In part, this is because the utility of higher mathematics is not as directly obvious as it
is for more basic mathematical reasoning. It is worth making this as concrete as possible, however, to help
better understand why the study of higher mathematics can be worth the effort that one has to put in.

Learning mathematics is, in part, about learning algorithmic thinking. Beyond this, however, the study of
mathematics helps us learn and practice with algorithmic thinking. Even if you never apply any of the mathe-
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matical tools learned, the process of algorithmic thinking is translatable to problem solving in a very general
context. The study of mathematics, then, can help you become a better problem solver, even if mathematics
is not used in solving the problem! This presents a good rational for studying higher mathematics generally.
Not only does it teach one how to actually be conversant with new mathematical constructs (which, can arise
in applications, depending on one’s career path), but it also helps inculcate new skills for problem solving
that are useful well beyond the intrinsic application of mathematical methods.

Therefore, even if you never compute another derivative, or solve another partial differential equation
after taking taking a course that covers these topics, the very act of learning the material will pay benefits.
The study of mathematics at all level helps establish and reinforce your ability to think about problems, and
to generate algorithmic methods for solving the problems you encounter. While this may or may not involve
the formal mathematics that you have learned, the process of thinking about problems will be indelibly
colored (to the positive!) by your experience in learning mathematics.
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“In this sense, therefore, mathematics would appear to be both more
and less than a language for while being limited in its linguistic capa-
bilities it also seems to involve a form of thinking that has something
in common with art and music.”

A. Ford and E.D. Peat
from “The Role of Language in Science”

“All models are wrong, but some are useful.”

George Box, statistician.

“The best material model of a cat is another, or preferably the same,
cat.

Arturo Rosenblueth and
Norbert Wiener,
from “The Role of Models in Science”

Languages, Mathematics, and Models

Before jumping into the topic of the various mathematical methods that are used for modeling in science and
engineering, it is worth spending a little time discussing some of the more philosophical (or “big picture”)
notions of what comprises mathematical modeling. There is much to cover under the topic of mathematical
modeling, and some of these are best experienced through examples and applications. However, there are
also some good high-level questions to ponder regarding modeling generally. Some of these questions are
posed in the material that follows, and the discussion gravitates more towards the philosophy of science than
is typical for the remainder of the text. Despite the fact that the material is partly philosophical, that does
not imply in any way that it is somehow unimportant in an applied sense. Understanding what is implicitly
embedded in the process of mathematical modeling is actually a very useful thing. For example, explicitly
noting (frequently unrecognized) assumptions is a key part of being a good problem solver! In problem
solving, to the extent possible, it is always a good idea to explain one’s assumptions; not, perhaps, to the
level of philosophical detail that is examined in the material following, but to the extent that it will help
others (or yourself) understand how the problem was solved.

Because language (and in particular the language that is mathematics) is part of modeling it is worthwhile
spending just a little effort attempting to understand exactly what languages are. The next section begins
to address this question. While the question broadly enters some deep philosophical terrain, the summary
discussion following helps at least expose the questions without becoming overly mired in philosophical
structures. This chapter as a whole is a collection of concepts regarding modeling and, in particular, mod-
eling with mathematics. The information that follows is material that helps better understand the process of
modeling, and how mathematics helps the modeler toward that goal.
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1.1 What is a Language?

The purpose of discussing language in this introductory chapter is to explore the link between languages,
mathematics, and models. We cannot cover the topic of languages in any depth, but even a cursory overview
is useful for the purposes of this introduction.

If you have ever studied languages, you may be familiar with the concepts of symbols, syntax, and seman-
tics. Symbols are the way that we express language (written or verbal). Syntax explains how a set of words
(symbols) are used together to according to rules to form any of the following: (i) a statement/assertion, (ii)
a question, (iii) a command, or (iv) an exclamation (these are the four options in most languages). Semantics,
on the other hand, seeks to assign meaning to syntax.

Languages can be divided into natural languages and formal languages. A natural language is one that
that has been developed instinctively and heuristically by humans to communicate with one another. Such
languages can be spoken, written, or both. Natural languages tend to be highly expressive; in other words,
many kinds of concepts ranging from the subjective (“do you like this painting?”’) to the objective (’the
toaster is broken”). One of the difficulties with natural languages is that it is difficult to codify the rules of the
language. So, while they are very expressive, it is difficult to know, explicitly, all of the rules of the language.
Most people who attempt to become fluent in a foreign language eventually encounter this problem; while it
is not difficult to become proficient enough to communicate well, it is exceptionally difficult to inculcate the
subtleties of every day language (e.g., the use of slang, idioms, and inflection are challenging) so that one is
truly fluent.

A formal language is one that is developed specifically to have a set of well-defined rules prescribing
it. These tend to be primarily written languages (for hopefully obvious reasons). In these instances, one
exchanges broad expressiveness with complex rules for restricted expressiveness, but with exceptionally
well-defined rules. The most familiar example of a formal language is probably a computer language such
as Python or C++. However, formal languages were developed well before computers existed. As an ex-
ample, the formal language known as first-order (predicate) logic was discovered in the late 1800s by a
mathematician named C.S. Pierce, and brought (roughly) its present form by the famous mathematician
David Hilbert in about 1915 (Ewald, 2022). First-order logic is widely considered to be adequate to allow
the axiomatization of all ordinary mathematics. In fact, this suggests that because mathematics arises from
the language of first-order logic, mathematics itself has all of the necessary properties of a formal language.
The relationship between language and mathematics is a subject of study in its own right, and it is a fascinat-
ing topic because it co-mingles such disparate disciplines. Interested students can find out more in the texts
by (Rosen, 2019, Chp. 13) listed in the bibliography.

While we will discuss modeling in the material that follows, it is worth pointing out that one of the
most famous philosophers of the 20th century, Ludwig Wittgenstein, suggested that language itself reflected
reality. According to some scholars, this implies that language is itself a model. For example, Mendie and
Udofia (2019) state of Wittgenstein’s philosophy that ... a proposition (language), is a picture of reality, and
a proposition (language), is also a model of reality as we imagine it.” We will not delve much more into the
metaphysical aspects of language as a model that is used to create other models. It is a worthwhile concept
to ponder, however, when we discuss the concept of models more generally below.
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1.2 What is Mathematics?

It may seem odd to start out a textbook on mathematics and modeling with a (very rough) definition of what
language is. But, because mathematics is itself a language, it helps us establish how to approach mathe-
matics and mathematical thinking. Like many broad concepts, actually defining what mathematics can be
challenging. It is somewhat exceptional that something that we are so familiar with, and use so frequently is,
at the same time, elusive to define. None of us are alone in experiencing this difficulty, however. Mathemati-
cians, philosophers, logicians, linguists, and scientists of various disciplines have been attempting to define
what mathematics actually is for a very long time (for exammple, see the book What is Mathematics? by the
famous mathematician R. Courant, (Courant and Robbins, 1996) for one expert’s opinion).

From our perspective, the question of “what is mathematics?” will be approached pragmatically. We care
about the question primarily in the hopes that understanding something about this question will also give us
additional insight into the use and limits of mathematics. It can also help better understand how to engage
with mathematics (and mathematical thinking) to become more proficient problem solvers.

In the material above, we introduced the idea of mathematics as a language. Without getting to hung up
on the intricate details (e.g., mathematics as a mode of thinking versus the particular way that it is expressed,
see for example Ford and Peat (1988) for more on this discussion), it is reasonably well accepted from a
philosophical standpoint that mathematics is a formal language (Gowers et al., 2008, §1.2).

While the status of mathematics as a language might sound like a primarily academic issue, it actually is
one that has plenty of real-world relevance to learners of mathematics. Generally, learning a new language
is viewed as being a significant undertaking, often requiring years of practice to reach any level of compe-
tence. And, although mathematics is a formal language (so its rules are well-defined), becoming proficient
in a strict rule-based language is also a challenge. So, it is perhaps not that surprising that many people
find mathematics a difficult topic— the study of mathematics is, in a very real sense, the study of a foreign
language. It happens to be a very formal language with limited (and also exacting) structure, but it is a lan-
guage nonetheless. As a language, one can study it from an academic perspective extensively, but still not be
particularly good at using the language. The reality is, like many languages, mathematics requires practice
to master.

To many students, recognizing mathematics as a language can be somewhat reassuring. First, it means
that one can dismiss the idea that mathematics should somehow be easy, even if one has been studying it for
many years. Becoming proficient in mathematics is much like learning new ways of using and understanding
a language, even one that you already have some competence with. For example, someone who is fluent in
modern written and spoken English might still struggle when first encountering the language of Shakespeare.
Or one might be challenged by having to learn language that has specific disciplinary meaning, such as the
jargon used in philosophy, history, or psychology.

The importance here is that recognizing mathematics as a language can (and should) change the way that
one learns about new mathematical ideas. As a language, it takes practice (e.g., explicitly solving problems)
and study to understand it. However, it is not generally true that there are people who “get” math and people
who “don’t get” math, any more than the the same categories would not be made for, as an example, the
language of Spanish or French. Thinking about mathematics as a language allows one the flexibility to
retrain their way of thinking about mathematics, and also to realize that practice (with attendant mistakes!)
is an essential component of learning the language.

When one accepts that learning mathematics is much like learning a foreign language, it can put a fresh
perspective on a topic that many otherwise approach unenthusiastically. Sometimes the process of learning
can involved unlearning patterns of thinking that were not productive. This is often the case in learning
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mathematics, and hopefully the perspective of “mathematics as a language” can be a organizational tool to
help engage with the topic in new ways.

1.3 What are Models?

Defining what comprises a model is a daunting task. If one looks to the philosophy of science, there is
no agreement whatsoever on the topic. Fortunately, we have a more practical than philosophical need for
defining models. Thus, for the purposes of this text, we can define a model as follows.

Definition 1.1 (model). A model is a conceptual or physical abstraction used to predict and explain a gen-
erally more complex feature (a thing), phenomenon (some natural entity that exists, such as gravity), or
process (such as, say, mass transport by diffusion) supposed to occur in the physical world. Usually, one
thinks of a model as mapping (or explaining) how a set of inputs (independent variables) relates to a set of
outputs (dependent variables), but this should be interpreted very liberally. Importantly, a model can describe
processes that may be only hypothetical.

The focus on “feature or process in the physical world” is purposeful. Certainly one can imagine models
for metaphysical phenomena. Here, we use the word metaphysical in its most basic meaning, that is, outside
of a possible description of the laws of physics as we understand them currently. As an example, one might
develop a model for explaining the existence of ghosts; however, such a model would almost certainly not
be within the bounds of physics as we currently understand it. This still leaves many grey areas depending
on context: for example, would a model of social-cultural phenomena, which is within the purview of the
sciences, be a valid one for us to consider? Here, we can say that as long as there were a model that did not
violate the laws of physics to explain the phenomenon of interest, then the model would be a valid one for
us to discuss. This will make more sense, perhaps, after the discussion of empirical models provided below.

To be more compact, in the future we can refer to the feature, phenomenon, or process as a physical
system. The definition of a system can be given as follows.

Definition 1.2 (system). A physical system, or simply system, is a group of interacting or interrelated ele-
ments (physical features, phenomena, or processes) that act according to a set of rules (which are may or
may not be fully known) to form a unified whole. A system may be described as being discrete or continu-
ous. For discrete systems, each element is distinct and the total number of elements is, in principle, a unique
integer. For continuous systems, each element is defined (non-uniquely) as being part of the whole, but the
division is only conceptual; the system cannot be though of as a unique sum of individual parts.

1.3.1 What are the Purposes of Models?

The creation of models comes from a particular need or purpose. Most readers of this text will already have
had experience with models, and could probably arrive at some very good reasons that they are useful. The
following are reasons that model building is enacted are as follows, but the list is not necessarily exhaustive.

1. For problem summary and simplification. One very common reason that models are generated are
to simplify an otherwise overwhelmingly complex system. The case of an ideal gas (which will also
be used as an example of complexity below) provides a great example. At near standard temperature
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and pressure, a momentum balance on all molecules in a volume of gas can provide a very accurate
value for the pressure. This, of course, is quite a complicated computation because one mole of gas has
6.02 x 10?3 molecules. Alternatively, the ideal gas law, P = 1/V(nRT) will also express the pressure
provided one knows V, n, R, and T. Computation of the pressure via the ideal gas law is clearly more
efficient than the momentum balance computation.

2. For understanding a system. Sometimes models are constructed to help better understand a system.
Again, we can use the ideal gas as an example. While the ideal gas law was originally developed empir-
ically (we will discuss empirical models below), as science progressed there was a desire to understand
more about how gases behaved. Statistical mechanics is a branch of science that computes the statistical
behavior of large numbers of bodies that obey the laws of mechanics (Newton’s laws or the laws of
quantum mechanics). It turns out that one can show that applying Newton’s laws to a large number of
molecules in a fixed volume and known temperature, then the ideal gas law can be derived as a result.
This is a case of proving an empirical macroscopic law by computing averages over a well-defined mi-
croscopic model. Here the words “macroscopic” and “microscopic” are used only in a relative sense to
establish the difference in length scales investigated in the two models. The result is that now the ideal
gas law can be shown to be consistent with both the original experiments that lead to the empirical law,
and with a conceptual model based on Newton’s laws. The fact that the ideal gas law can be devel-
oped by these to independent approaches simultaneously increases confidence in it, and also provides
additional explanatory ability for our models.

3. For allowing prediction of system behavior. One of the most common use of models is to predict sys-
tem behavior. While there are many examples, one might consider something as simple as determining
the forces on a truss that will be used as a bridge for pedestrian traffic. While actually engineering a
bridge is a multistep process, it would at least start with applying Newton’s laws to the proposed bridge
structure to determine the distribution of forces in the members of the truss under typical loads. This
is something that is often done in undergraduate physics, or a course in statics. With information about
the distribution of forces, one could then begin to determine what materials (type of material, material
shapes and sizes) would be required to function properly. The advantage of this kind of approach is that
predictions can be made for various kinds of options for the truss. Different structural designs, different
materials, and different loading conditions can all be done as various what if? scenarios. This is useful
and efficient. The prediction of system behavior from a model means that one does not need to physi-
cally build many different trusses and then test each of them. The advantages of this kind of modeling
are hopefully obvious.

1.3.2 What Kinds of Models Can be Constructed?

Restricting ourselves now to models that have some relevance to a physical system, we can identify several
kinds of useful models and put them in categories. Almost every attempt to categorize broad concepts leads
to some lack of distinction for particular cases, but the general organization of ideas is still a useful one.
Hence, we categorize models as follows.

1. Physical models. The quote at the start of this chapter “The best model of a cat is another cat, prefer-
ably the same cat” is both meant to be somewhat humorous, but also to relate an essential feature of physical
models. Physical models are, as their name suggests, models that are created out of matter (and, in some
senses, energy) for representing a feature, phenomenon, or process. The physical model can be an analogue;
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that is to say, it can be a phenomenon that simulates some physically completely different phenomenon. For
example, steady groundwater flow and electrical current can be described by the same differential equation.
Thus, in the past, researchers have used electrical analogues to model groundwater flow. Physical models
can also be based on the concept of similitude. Here, the idea is to make a physical model that represents
the actual physical system, but at a different scale. The similarity between the physical model and reality is
enforced by assuming that one or more dimensionless numbers are identical between the two. The idea of
similitude seems to have been developed by the fluid mechanist, Osborne Reynolds in his study of turbulence
in channels (Reynolds, 1883). At an extreme, a physical model can be the system of study itself. At Oregon
State University we have the H.G. Andrews Experimental Forest, which contains a number of experimental
watersheds (a watershed is a geographically-defined region where rainfall and snowfall are channeled to an
outflow). In this case, “the best model of a watershed is another watershed”.

One key aspect of physical models is that the model input is the physical model itself, and a specific set
of initial, boundary, and parametric conditions. The output of a physical model is almost always a sequence
of measurements in time, in space, or in both. In principle, a physical model is transparent model in regard
to its assumptions, etc., and is sometimes called a white box model (this is in contrast to a black box model,
described below).

2. Conceptual models. Conceptual models are models that are represented primarily by the use of some
language as defined above. The kinds of conceptual models that we will be most interested in are ones that
can be defined using the language of mathematics. However, these are not the only kinds of conceptual
models that are useful! Explanations of systems using regular English (or any other natural language), using
flow charts, or even drawings might all be classified as conceptual models. The primary distinguishing
feature of a conceptual model is that it is (i) not a direct physical analogue to the system being modeled,
and (ii) it is expressed using some kind of symbolic language (and here, we will extend the use of the words
“symbolic language” to include graphical representations such as flow charts or descriptive illustrations).
One advantage of conceptual models that are expressed using mathematics (or formal logic) as the language
is that the communication of the model and the model inputs, structured, and outputs (or results) are about
as clear and incontrovertible as is possible for a conceptual model. Some conceptual models deal explicitly
with uncertain or fuzzy data; such models are sometimes referred to as grey box models.

3. Empirical models. Empirical models are models that are based primarily upon relating model inputs
to model outputs, without necessarily understanding the intervening mechanisms that transform inputs to
outputs. Hence, such models are sometimes called black box models (a term of uncertain origin, but one
made popular in the context of modeling by R. Ashby and N. Wiener around 1960). Empirical models are
probably the oldest kind of modeling that has been done in science, and has been successful in many different
areas of the natural sciences. There might be a tendency to view empirical models as being somehow less
than their non-empirical counterparts. This is not generally true! As one example, one might consider the
original “laws of friction” which, in its simplest form, stated that the friction experienced between two
surfaces was linearly proportional to the normal force between them. This, of course, has been a useful
model that is still widely applied today. It is also a model that has been based largely on empiricism. While
it is true that we now know that the observed friction arises from microscopic variations in the surfaces (and,
depending on the scale of investigation, on other microscopic forces). Yet, rarely do we attempt to explicitly
model such phenomena. Rather, the empirical evidence that has been built up over time provides a strong
argument that the empirical model is both valid and accurate.

Empiricism in science is even one branch of the philosophy of science. Famously, Ernst Mach (of Mach
number fame) was a staunch empiricist, and felt that science should be based as much as possible on what
was strictly observable, and that interpretations should not be made via unobserved quantities. While em-
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pirical models still have a role in the natural sciences, rigidly subscribing to empiricist philosophies has
fallen out of favor; in part, this has been because of some failures of the approach. It was well known, for
example, that Mach opposed Ludwig Boltzmann and others who proposed an atomic theory of physics. His
objections at the time were that atoms were not directly observable, and thus positing the existence of them
was non-scientific. This, of course, seems somewhat of a backward stance now that we routinely and directly
measure atoms (e.g., in atomic force microscopy). Thus, there must be some balance between purely con-
ceptual modeling of the universe around us and purely empirical modeling. A purely conceptual model that
is incapable of ever being measured (e.g., string theory) is somewhat vacuous. A purely empirical model
that does not dare to explain the phenomena that is responsible for the observations fails to move science
forward at the pace it otherwise might.

4. Digital models. Digital models have been included last because of their unique status as models. Dig-
ital models are, for our purposes, models that rely on a digital computer to process input data and generate
output data. Such models, curiously, are in some ways a mixture of the three models specified above. First
of all, computers are, themselves, physical apparatus; much like analogue electrical models for groundwater
flow, digital computers rely on physical hardware to construct a model. Second, digital models are often
approximations of conceptual models. For example, when programs uses a root-finding method on a com-
puter, the underlying theory is entirely conceptual; the actual execution, however, is limited by the finite
arithmetic of a computer, and is thus an approximation. Finally, note that computers are complex machines
that involve processors, memory, storage, etc. Few users of computers actually understand, in detail, how
a computer actually works. Even someone who does understand how a computer works in detail usually
cannot observe all processes that occur for a computational algorithm to transform input data into output
data. In this sense, we must view digital models as being, in some sense, empirical, if for no other reason
than it functionally a “black box”. Regardless of these limitations, digital models have quite literally revolu-
tionized modeling in the natural sciences. Most recently, the advent of machine learning returns to sciences
empirical roots in some ways by allowing users to make empirical sense of large sets of data by allowing
a computational algorithm to fit or categorize data. While there are many efforts to make such models un-
derstandable and interpretable by humans, most of them must be viewed currently as largely empirical. This
hardly means that they are not useful; rather, it means only that we have explanation that sometimes lacks
deeper understanding.

1.4 The Modeling Process

One of the beneficial uses of mathematics for scientists and engineers is that it is a natural language for
problem solving; although it is hardly true that all problem solving requires mathematics. The process of
problem solving involves the use of a language — which may or may not be formal language for expressing
mathematics or logic— so that the problem solving process can be represented. Assuming that a problem has
been identified, solving the problem using a language (including the language of mathematics involves) at
least the following steps.

1. Abstraction. Once identified, the problem needs to be described in some terms that are simpler than
the actual system. If the solution is to be a mathematical one, then the simplified system needs to be “trans-
lated” into the appropriate mathematical expression. Abstraction is often done in a universal sense (e.g.,
using variables instead of numbers for constants) so that the abstracted representation can be generalized
beyond the specific case of interest. This is one of the powerful features of mathematics; a single mathe-
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matical statement representing the abstraction of a problem can actually represent a whole class of similar
problems. As an example, think about the problem where there is a small deflection (d) of a end-loaded beam
pinned at one end and free at the other (with the free end loaded). With appropriate assumptions, the solu-
tion to this problem depends on the magnitude of the load (say, W), the length of the beam (L), the Young’s
modulus (E), and the moment of inertia of the cross section of the beam (/). Under these circumstances, a
whole class of problems can be solved using mathematics. To be concrete, the solution is of the form

WL

- 3EI

For all possible (and reasonable) values for W, L, E, and I. This is very powerful statement that covers an

enormous range of different physical situations. This is part of why abstraction is an important concept; the

results for an appropriately abstracted problem can be much more general than would be the case for specific
instances of the problem (e.g., where W, L, E, and I were all fixed values).

When possible, the abstraction step should include explicit statements about the assumptions that are
imposed. This step is an important one, because it provides a recognition of which variables are considered
to be important to the model, and which are assumed not to be important. If model revision is required (see
step 4, below), a recognition of the variables that were not included can make it easier to create a revised
model that may have more predictive power.

Stating a problem in a language is an essential component to problem solving. Stating a problem via
mathematics is an especially powerful process. For example, it allows one to communicate, reasonably
exactly, the statement of the problem (with attendant simplifications) to someone else. Because the language
of mathematics is formalized and simplified, it has high fidelity (one is quite clear on the meaning of a
particular mathematical statement, once formulated), but not as expressive as most natural languages (i.e.,
one does not generally use the language of mathematics to write poetry).

(1.1

2. Model building via algorithmic processing. There is also a deductive process that must occur so
that the problem stated can eventually be used to determine a solution, assuming that one exists. The so-
lution process is example of an algorithm, and the mental process of actually working through the steps
to the solution is, as mentioned in the introduction, algorithmic thinking. In reality, there is no need use
mathematics specifically for problem solving. One could, for example, use modern English as a language
and accomplish the same thing. However, the compactness of the symbols used in mathematics make it a
much more convenient tool for problem solving. Another important feature is that, because mathematics is
a highly constrained language used for a specific purpose, it is much less ambiguous than modern English
would be.

3. Computation and concrete realization. Once a problem has been stated, and a solution process
identified, a particular solution can be computed. In the example above for a beam deflection, the concrete
computational step would be the generation of the formula for deflection, and then the subsequent substitu-
tion for values of W, L, E, and I for the particular case of interest. The result would be a concrete number
expressing the predicted deflection in some specified units. While the results of a model computation are
concrete (in the sense that one obtains an answer), the results may not correspond well to the even more
important behavior of the physical problem being solved (i.e., the “real world” application of your model).
Thus, there are several steps to concrete realization: first, one must actually use their model to compute (or
measure) a result produced by the model. Second, assuming that one’s model corresponds to a real, physical
system, then the result of the model should compare well enough to reality that the model is acceptable. Here
well enough indicates a level of fidelity that is required for a particular application, and cannot be specified
independently from knowledge of the fidelity needs for the application. As an example, one might want to
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be quite certain that a beam design will not fail, because failure generally would represents a serious conse-
quence; thus, high fidelity in the modeling may be required. In another model, say a model for how many
treats you predict your dog will eat on your next walk, may have few negative consequences if you are in
error (however, your dog may feel differently about this); thus, lower fidelity is acceptable.

4. Revision. A model is complete if it meets some pre-determined measure of fidelity for the application
intended as discussed above. Often, this means matching data, although other qualifications are possible.
We might find that our first efforts at modeling do not meet our goals for fidelity. If this is the case, then
the assumptions / neglected variables that were identified during the abstraction step can be very useful
in helping to generate a revised model that has more predictive power when assessed by the the specific
measures of fidelity that are used. There may be a number of iterations through steps 1-4 above before a
successful model is attained.

The revision step may also involve a process known as model validation. Model validation is the process
of determining whether or not a particular model is appropriate for the intended purposes; thus, it has an
obvious connection with the revision process. Usually, model validation requires that the model meet some
performance metric within a prescribed level of accuracy or tolerance. As an example, a performance metric
might be that a conceptual model describes some observed data with a sum of squared deviations between
the two being less than some value, V, determined by an external constraint (e.g., cost/benefit of the design,
safety needs, etc.) Model validation is an important step in the modeling process for many applications, and
it represents an entire sub-discipline within modeling.

The steps described above represent the process of modeling. Scientists and engineers use models all of
the time. Any time that we make some simple system that is intended to represent the essential features of a
more complex system, we are making a model. The particular kind of model depends upon the tools available
and the kind of system being represented.

1.5 Models and Units

Finally, this discussion remains incomplete without addressing the problem of units. While pure mathemat-
ics exists quite happily without the imposition of units, when modeling physical systems, the use of units
becomes essential. While most of us already know what is meant by the term units, it is still useful to define
them. The use of a system of units allows one to identify and communicate the kinds of physical quantities
that are being modeled. It also allows one to establish the magnitude of the quantities in some standardized
sense. Formally, the definition might be given as follows.

Definition 1.3 (base units). A set of base units provides a standardized name and magnitude for various
kinds of physical quantities. These form the basis of a measuring system, where other physical quantities
can be expressed as multiples of the set of base units.

An important concept here is that there is a set of base units which all other units are constructed from.
For example, in the International System of Units (SI) , the fundamental units are:

1. The meter (symbol: m), used to measure length.

2. The kilogram (symbol: kg), used to measure mass.

3. The second (symbol: s), used to measure time.

4. The ampere (symbol: A), used to measure electric current.
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5. The kelvin (symbol: K), used to measure temperature.
6. The mole (symbol: mol), used to measure amount of substance or particles in matter.

7. The candela (symbol: cd), used to measure light intensity.

There are some curiosities involved in the writing of units. While many units are named after people, the full
names of such units are not capitalized. However, usually the symbols for the associated units are capitalized.
Thus, we have 1 ampere = 1 A. Does this make sense? Well, the question is not relevant: a formalism has
been established, and thus it is clear what to do here (even if it is not clear why it is this way!) The inclined
student can examine the National Institute of Standards and Technology (NIST) Office of Weights and
Measures (https://www.nist.gov/pml/owm/writing—si—-metric-system—units) to
learn more about the vagaries of unit names and conventions.

The primary point to be made here is that this base set of units can describe all other possible physical
quantities that can exist. As a concrete example, we can think about the concept of voltage (which is analo-
gous in many ways to pressure in fluid systems). While we are used to expressing voltage in Volts (e.g., in
North America, our single-phase household wiring is approximately 120 volts operating at a frequency of
60 s~!). However, the unit of volts is not fundamental. Instead, note the following. One volt is equal to one
joule per coulomb. A joule is equal to a newton-meter. A coulomb is equal to one Ampere-second. Thus

2 2
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(1.2)

On the farthest right expression in Eq. (1.2), the volt is expressed in its base SI units. The list of seven
units provided above are sufficient to express all possible physical quantities that are known today. While
one might be tempted to believe that “units” would not continue to be researched today, it turns out that it
is still a subject of much discussion! There are efforts currently to establish all units in terms of “universal
constants” (e.g., the gravitational constant, G, or Plank’s constant %2), and thus the topic is still one of evolving
research (e.g., see Bordé (2005)).

1.6 Mathematics, Models, Determinism, and Complexity

When developing models, one usually makes certain kinds of very basic assumptions about the ultimate
utility or purpose of the model. For example, quite frequently we assume that the models that we generate
will allow us to make some kind of prediction; this is indeed often the purpose that we bother to generate
models in the first place.

While models have been successfully used by humankind for thousands of years, in (relatively speaking)
more recent times, we have discovered that sometimes the models that we formulate provide us with infor-
mation that is qualitatively (and quantitatively) different from what we generally have come to expect from
models. To be more specific, we learned that not all models can be expected to be deterministic (a word that
will be defined in more detail below). Instead, we have found that the results of some models are so sensitive
to their model parameters (for example a physical property, such as density) or to the conditions at their
initial state or on boundaries, that in practice we cannot make deterministic predictions. This does not mean
that such models are not useful. However, it does mean that the kinds of information that one expects from
such models is different than what one expects from models that behave deterministically. The concepts of
determinism, and the related concept of complexity, are discussed in the material following.
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1.6.1 Determinism in Models

Determinism was a framework developed by Greek philosophers during the 7th and 6th centuries BCE. In
short, the philosophy was that cause and effect are bounded together in a way that could (in principle) be
understood. It assumes that if an observer has sufficient information about an object, that such an observer
might be able to predict every consequent move of that object. In the mid- to late 1600’s, famous philosophers
and scientists (such as Ren/’e Descartes and Sir Isaac Newton) codified this idea as being a natural part of the
physical world. However, it was the mathematician-scientist Pierre-Simon Laplace who advanced the idea
of determinism into the modern scientific discourse. Laplace stated emphatically (Laplace , Marquis de)

‘We ought then to regard the present state of the universe as the effect of its anterior state and as the cause of the one which
is to follow. Given for one instant an intelligence which could comprehend all the forces by which nature is animated and
the respective situation of the beings who compose itan intelligence sufficiently vast to submit these data to analysisit
would embrace in the same formula the motions of the greatest bodies of the universe and those of the lightest atom; for
it, nothing would be uncertain and the future, as the past, would be present to its eyes.

This perspective was viewed with nearly the status of a physical law. However, in the late 1800s, Henri
Poincaré suggested to the world that perhaps systems were not always as deterministic as had been un-
derstood. Poincaré found that there were systems of differential equations (which, in turn, were models of
physical systems) where the final solution was quite sensitive to the initial conditions. Poincaré’s observa-
tions led him to the following statement

A very small cause, which eludes us, determines a considerable effect that we cannot fail to see, and so we say that
this effect is due to chance. If we knew exactly the laws of nature and the state of the universe at the initial moment,
we could accurately predict the state of the same universe at a subsequent moment. .. But this is not always so, and
small differences in the initial conditions may generate very large differences in the final phenomena. A small error
in the former will lead to an enormous error in the latter. Prediction then becomes impossible, and we have a random
phenomenon.

This observations has been examined and refined over the years; today we call the study of such sensitive
systems (among other names) chaos theory. In short, what this means is that both mathematical and physical
systems exist where, despite our best efforts and most advanced technology, we can never know enough about
the system such that its future behavior is knowable with certainty. While today we are somewhat familiar
with this idea because of our understanding (even superficially) of quantum mechanics, the idea that even
non-quantum-mechanical systems (or macroscopic systems) can behave in ways we are not able to predict
still comes as a surprise to many people.

The non-deterministic behavior of physical and mathematical systems led to somewhat of a revolution in
the way that physicists, scientists, and mathematicians thought about and represented models of processes
that occur in our world. What we once thought of as knowable if given the proper kinds and amount of
information was now understood to be knowable only within certain bounds. Even without the strangeness
embodied in quantum mechanical systems, we found that some large-scale physical systems (such as the
weather) could be so sensitive to the initial conditions or other physical properties, that their long-term
behavior could not be modeled with certainty. Primarily, this kind of behavior was observed for nonlinear
models. The concept of nonlinearity is explained in more detail in the next chapter. In short, however, one
can think of nonlinearity in this application as meaning that small changes to the system can yield arbitrarily
large responses. This does not happen in so-called linear systems, where small changes to the system always
yield a response that is small in some sense.

The gradual unraveling of the idea that the physical world and associated models of it should be determin-
istic represented a significant change in the way that scientists and mathematicians thought about the models
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they used. Because part of the purpose of a model is to describe the complicated universe by collecting
and utilizing understandable ideas, it seemed that the lack of determinism created a problem. This problem
was specifically that some reasonable models of physical processes yielded behavior that was inherently
non-predictive in some ways. The consideration of this problem led to new research that eventually became
known as complexity science(Phelan, 2001), or simply complexity.

1.6.2 Complexity in Models

When we say something is complex in English, we usually mean that it in the sense of “not easily under-
stood”. This could be a technical comment, or one that represents other factors involved in the real world
(e.g., it would be safe to say that the geopolitical situation in the Middle East is complex, without intending
any technical notion of complexity). Similarly, in mathematics complex can also mean involving numbers
that have an imaginary component. In modeling, we usually mean neither of these things by the word com-
plex (although there are certainly cases where more than one of definitions of the word complex might
apply!). While we will study only a few models that can be considered to be complex in this text, it is
important to understand what complexity is as it relates to modeling.

The complexity of a model means different things in different disciplines. However, nearly all definitions
of the word, as it relates to modeling, involve answering the following question: how difficult is it to explain
our model as it relates to predicting the behavior we are attempting to represent? One may be more con-
crete by replacing “how difficult is it” with “how much information is needed” (however, this also requires
a subsequent definition of information, which we are not prepared to detail here!). A key concept in an-
swering this question involves an attempt to define regularities (Phelan, 2001) in our model and its solution.
Complexity science introduces new ways to identify and study the regularities of even non-deterministic
systems; importantly, these methods were represent new ways of looking at problems (Phelan, 2001). While
one generally thinks of finding regularities in systems that are non-deterministic, this idea can also be useful
for systems that are deterministic. As an example, suppose that we wanted to measure the weight of 10,000
ball bearings. While one deterministic option would be to measure every bearing, one could introduce other
strategies depending on what kind of information was actually needed. If the actual weight of every bearing
was needed, we would indeed have to weigh each one (and keep track of them with labels). However, sup-
pose we needed only to know the weight with a particular confidence (say, with 95% confidence)? Then, we
could measure the statistics of a randomly selected subset of the bearings, and make a statistical inference
about the average and standard deviation (with enough measurements to assure 95% accuracy). Of course,
when we do this, we are making a strong assumption about the regularity of the system. For example, in the
case of the bearings, we are assuming that the population of all 10,000 bearings was regular enough such that
standard statistics could be used to summarize them. This is an example of a modeling assumption of system
regularity that allows us to propose a deterministic model (even though the resulting model is statistical, it is
deterministic in the sense we have defined for models) for measuring the bearing weights without measuring
each bearing individually. Thus, the assumption and search for regularity in models can be a very powerful
tool!

So, how do we define the word complexity. Again, there is no one universally agreed upon definition.
For the purposes of this text, however, we will define complexity in modeling as follows. When applied to
modeling, the word complex (or complexity) implies at least one of the following is true.

1. Large number of variables. Some models have so many degrees of freedom (i.e., variables) that
it is not practical or possible to solve the system. An example here is the model of a mole of an ideal
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gas as a collection particles obeying classical mechanics (Newton’s Laws) at a fixed temperature. While
such a model is indeed both deterministic and even accurate for certain gases and states, not many would
find the tracking of 3 momentum variables and 3 position variables for each molecule (making a total of
(3+3) x6.02 x 10?* ~ 3.6 x 10>* variables!) to be a very practical computation to make. However, using
statistical tools, and assuming certain kinds of regularity are manifest by the velocities of gas molecules, it
is possible to actually derive the ideal gas law from the consideration of essentially Newton’s laws applied
to roughly 10 particles. The assumption of regularity has clear power here: instead of needing on the order
of 10?* variables to describe an ideal gas, we can use the classical ideal gas law pV = nRT. For our case of
a single mole of gas at a fixed temperature, the regularity assumption allows us to describe the system with
variables (p, V) and one constant (R). This represents a significant reduction in the difficulty we would have
in explaining (or the “information embodies by”’) our model of the system!

2. Non-deterministic behavior. A second meaning for complexity in a model is the condition where the
model behavior is so sensitive to initial, boundary, or other conditions (e.g., the exact size of a particular
parameter) that it is nearly impossible to predict the behavior of the model in a classical sense. Such models
are called chaotic, as discussed above. Colloquially, we can think of such models as ones that will predict
a very different outcome with even a very tiny change in the conditions (initial condition, parameters, etc)
the describe the model. Because we seldom know initial, boundary, or parameters for real systems with high
accuracy, the resulting model has very little predictive value because small errors in the conditions can yield
wildly different results. In short, many systems in science and engineering subscribed to the rule that “small
perturbations create small effects” (and this is always true in a sense for linear problems). For chaotic prob-
lems, this rule is no longer true.

3. Emergent behavior. This concept is not easy to describe concretely, but the term emergent in de-
scribing the behavior of some models (usually nonlinear ones) is now so commonplace that it is important
to understand what the essential features of emergent behavior is. In plain English, behavior describes the
process where a model starts from a condition that is not very “interesting” to one that has high structure, in-
formation content, or behavior that would not necessarily be expected. In other words, the model transitions
from one archetype to another in a surprising way. While this is hardly a concrete definition, no concrete
definitions seem to exist. One of the first detailed studies for this kind of phenomena was conducted by
the famous British mathematician Alan Turing (who is primarily known for his groundbreaking work on
computers in the 1940s and 1950s). In Turing’s applications, the emergent behavior was given by a reaction-
diffusion equation, and was proposed as a possible explanation for how certain patterns arise in biology (e.g.,
the spots on a cheetah, or the pattern on some shells). These patterns are sometimes called Turing patterns
in honor of the discovery. For the interested reader, a review of emergent behavior in general is given by
Krause et al. (2018).

In each of these kinds of complexity, the search for regularity in the models and their solutions can yield
understanding in areas where it would be otherwise lacking.

The fairly well known example of complexity in mathematics can be found in the example of certain
fractals. As a specific example, one can point to the Julia set, which is a chaotic function of the initial point
selected for iteration. Most of us have seen images of the Julia set, and these images have almost reached the
level of pop culture; a cursory examination of Fig. 1.1 might suggest that it is a familiar looking plot. The
Julia set is usually computed via iteration. Even a small change in the initial condition for these iterations
will yield a dramatically different set of results for the “shape” of the resulting Julia set. An example of high
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Fig. 1.1: Two representations of the Julia set. This set is determined iteratively for z; = x; +iy; by selecting a grid of (x,y) of
starting values, and then computing z;, = z§ + ¢ until convergence. The value of ¢ is a constant number of the form
¢ = ¢y +icy. Selecting different values of ¢ selects different Julia sets. The images above are generated by computing the

1
magnitude of each converged value of ze = Xe. -+ iy.. on the grid, and computing its magnitude, m, where m = (x2 +y2)2. (a)
¢ =0.274 —i0.008. (b) ¢ = 0.275 —i0.008. For these images, a 0.4% change in the real part of ¢ yielded dramatically different
magnitudes for the resulting function.

sensitivity for the Julia set is given in Fig. 1.1. Here, a change of only 0.4% of one of the parameters in the
model led to dramatically magnitudes (represented by the color) for the set.

As a second example of complexity, we can consider the third definition provided regarding the concept
of emergent behavior. Nonlinear reaction-diffusion systems are one of the oldest examples of systems which
can show emergent behavior. The diffusion reaction system given by Egs. (1.3)-(1.4) are known as a Turing
model with Fitzhugh-Nagumo reactions; these equations represent the diffusive mixing and reaction of two
chemical species (where the species concentrations are represented by the variables #; and u;) that have the
capacity to create self-organized non-homogeneous patterns in space in the steady state.
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In Fig. 1.2, the spatial distribution of u is plotted for three times. At time zero (left panel), the concen-
tration of u; (indicated by the color) is random in space. At the intermediate time (middle panel) one begins
to observe spatial structure forming due the combination of diffusion and nonlinear reaction. Finally, at the
near-steady-state condition (right panel), a spatial pattern has clearly formed showing high-concentration is-
lands of u;. Although the conditions for u; are not plotted, they have similar initial conditions and evolution.
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Fig. 1.2: Three spatial distributions of species ] reaction-diffusion system given by Eqgs. (1.3)-(1.4). These images represent
the concentration of species u; for =0, 100, and 1000 s, and illustrate emergent pattern formation. (Left) Atz = 0, the initial
configuration of the two species is a random function in space. (Middle) Pattern at # = 100 s. (Right) Pattern at r = 1000 s,
which represents near steady-state conditions. The model was run with the following parameters: D = 0.00028 cm?/s,

D> =0.005 cm?/s, 7=0.1, and Kk = —0.5 mmol/(cm3~s). For the color scale, red indicates a high concentration, whereas dark
blue represents a low concentration. “Turing Bifurcation” images by Hubodeker are licensed under CC-BY-SA-3.0.

1.6.3 Simplicity in Models

Simplicity when applied to modeling is not the converse of “complexity”. Model simplicity pertains to the
idea that the most effective models impose only what is necessary to capture the phenomena modeled, and
no more. It turns out that this idea has been around in the philosophy of science for a very long time. The
idea that models should be as simple as possible has been around since at least the early 1200s (Franklin,
2001). The principle is often called Occam’s razor (where razor is a fanciful terminology indicating that
the idea shaves away the unnecessary) after an English Franciscan friar named William of Occam. While
Occam did not originate the idea, he did make it a popular one in the philosophy of science. One version of
his statement (actually appearing in his works) is given by

Plurality must never be posited without necessity

In short, the idea is this: Given two competing models for a system, each with similar predictive power, the
simpler model should be preferred. Sometimes this idea is also called the principle of parsimony, for obvious
reasons.

The statement of Occam’s razor has been repeated many times over the decades. Some famous examples
are as follows.

o [saac Newton stated in his famous text the Principia “We are to admit no more causes of natural things
than such as are both true and sufficient to explain their appearances.”

e FEinstein can be quoted as stating (in a lecture at the University of Oxford, 1933) “It can scarcely be
denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few
as possible without having to surrender the adequate representation of a single datum of experience.”

e A composer named Roger Sessions famously misquoted Einstein by stating “I also remember a remark
of Albert Einstein, which certainly applies to music. [Einstein] said, in effect, that everything should be
as simple as it can be but not simpler!”.

e A memorable version of the statement was given by Nobel-prize-winning medical researcher Theodore
Woodward. His interpretation of the concept was stated by the aphorism “When you hear hoofbeats,
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think horses, not zebras.” While the principle was intended to be applied to diagnosis of medical condi-
tions, it is a colorful way of summarizing the core idea of Occam’s razor.

While all of this sounds somewhat qualitative, it turns out that it can be adapted for use in a quantita-
tive environment. In the mid 1950s a statistician named Edwin Jaynes surprised the physics community by
showing that Occam’s razor, stated as the principle of maximum entropy could allow one to derive statistical
mechanical results with accuracy. In conventional language, Jaynes was able to show that applying the statis-
tical notion of maximum entropy in certain statistical mechanical computations was equivalent to inserting
the minimum amount of assumptions. Jaynes was able to show that the conventional assumptions required in
classical statistical mechanics could be replaced by maximizing the entropy under known constraints. Doing
so would generate a solution that was maximally noncommital to unjustified assumptions. This represented
somewhat of a revolution in the way that we think about modeling systems, and turned out to be very much
a practical realization of Occam’s razor. Thus, what started out as a philosophical principle (Occam’s razor)
turned out to have utility in a quantifiable way.

1.6.4 Overfitting Models

An occurrence in modeling that is related to the concept of parsimony is the problem of overfitting a model.
The term overfitting comes from the related disciplines of statistics and data science. Conceptually, the idea
is simple. Overfitting means to model a particular set of phenomenological data very accurately, but in a
way that does not generalize well for representing other data sets of the same phenomenon. Frequently, this
arises because of a lack of obeying Occam’s razor. It is easiest to explain this problem through an example.

Drag on bodies moving in fluids has been studied for hundreds of years, and frequently one finds that there
is a relationship between the drag force and the square of the velocity. Suppose we run two independent sets
of experiments where we measure the drag on a body in a wind tunnel for various velocities; we call these
two sets of experiments A and B. We use experiment A to calibrate a model that allows us to predict the
drag for a velocity. Then, we use our calibrated model from experiment A to predict the behavior of the data
measured in experiment B.

In Fig. 1.3, we have plotted the original data (complete with a 95% confidence interval), and we have fit
two different polynomials to the data. First, our experience with drag laws would suggest that a quadratic
should provide a reasonable fit to the data. Our fitted quadratic (constrained to be everywhere positive) seems
to match the data reasonably well, and is acceptable in that it falls within the 95% confidence interval for
each data point. In Fig. 1.3(c), we show the results of a fifth-order polynomial (constrained to be everywhere
positive) fit to the data. Including the origin, there are six data points total. It is always possible to find a
polynomial of order n that will go through n + 1 points. Thus, the fit in this case is perfect. But is it an
optimal fit? This would depend, in some ways, upon our goals. First, because we know that drag laws are
generally quadratic in the velocity, a fifth-order polynomial goes against our “prior data” indicating that we
might expect a quadratic form. And, while the fifth-order polynomial certainly fits the data perfectly, one
has to wonder if the additional variation in the curvature represents anything physical, or is simply a very
accurate representation of the experimental error that we know to be part of the experiment.

One way that we can begin to answer these questions is to look to see how well this model generalizes.
In other words, we have two models derived from experiment A. If these models generalize well, that means
that if we take another set of experimental data (replete with its own measurement errors), the model will
still provide a reasonable fit to the data (i.e., it “explains” the data). In Fig. 1.4 we show the results of using
the models from experiment A to fit the data from experiment B. In Fig. 1.4(a) we show the data from
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Fig. 1.3: Results of drag experiments, experiment A. (a) The drag data for experiment A. (b) A quadratic least-squares fit
(constrained to be positive) of the form Fp = 1.05U2. (c) A fifth-order polynomial that fits the 6 data points perfectly;
Fp = —0.137553%° + 1.17801x* — 2.89406x> +2.66579x2 +0.785579x
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Fig. 1.4: Results of drag experiments, experiment B. (a) The drag data for experiment A. (b) The quadratic least-squares fit
(constrained to be positive) of the form fit to model A, and tested on model B. (c) The fifth-order polynomial fit from model A,
and tested on model B. One can see that for the data of experiment B, the quadratic model actually fits the data better than the

fifth-order polynomial model. This is a result of over-fitting.

experiment B, and in parts (b) and (c) we show the fits of the quadratic and fifth-order polynomial models
to the data. Here, it is no longer evident that the fifth-order polynomial does a better job of fitting the data.
In fact, because of the additional components of the polynomial, it actually explains the data less accurately
than the quadratic model (i.e., there are two data points where the fifth-order model fails to be within the
95% confidence interval of the data points).

This is a good example of the problem of overfitting. What has happened here is that we have added
unnecessary degrees of freedom (i.e., additional constants and their attendant polynomial functions x3, x*,
x°). While these additional degrees of freedom allowed us to generate a more accurate model for a single
instance of our drag data, the model failed to generalize well. This is because the model was overly specific
to the data that we had. We needlessly added additional degrees of freedom to our model, in contrast with
Occam’s razor. This occurred because we ignored prior data (i.e., we knew that drag models are generally
quadratic). However, using the formalism of maximum entropy, we could also have looked at many such
experiments, and found that the errors induced by the fifth order model were not distributed by a normal
distribution (which would be expected for the quadratic fit), but rather by some skewed distribution (because
it systematically under-predicts the drag in the middle off the velocity range). One can show that skewed
distributions actually have less entropy than do normal distributions. In short, the more entropy a distribution
has, the less parameters it takes to describe the distribution. Thus, Occam’s razor would suggest that we
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choose the distribution with the greatest entropy (and least assumptions), which, in this case, is the quadratic
model. It is interesting that Occam’s razor has something quantitative to say about fitting models. In fact,
such entropy techniques have become important tools in the burgeoning field of machine learning.

1.7 An Example of Model Building: Attneave’s Cat

The topic of how geometric shapes are processed by the human visual cortex has been a topic of both
qualitative and quantitative research for many decades (Kohler and Held, 1949), and it continues to be
an active area of research for a variety of reasons ranging from the psychological (e.g., understanding the
structure-function of the brain) to the practical (predicting how best to present information visually to an
active user, such as in a “heads up” display).

In 1954, a psychological researcher named Fred Attneave proposed a model where he postulated that in 2-
dimensional contour figures, the regions of high curvature would contain the greatest amount of information.
While this theory is still being discussed in the literature (Torfs et al., 2010; De Winter and Wagemans, 2008),
it appears to be one component of a possibly more complex understanding of human perception and vision.

It is interesting to examine the steps in problem solving listed in Section 1.3 as applied to Attneave’s cat.
In the following list, thoughts about each of the steps is discussed.

1. Abstraction. The abstraction step involved in Attneave’s work is significant. Attneave is not attempt-
ing to model a cat, but, rather, the image of a cat. The abstraction step is the process by which Attneave
asked (and attempted to answer) the question “what is it that makes an image identifiable.” In particular,
Attneave was interested in stripping away everything unnecessary so that only one or two elements could
be focused on. Ultimately, he chose to represent his images as a contour, with straight line segments joined
by high-curvature segments. The primary output from the abstraction step in this case was the formation of
the hypothesis as a relatively simple statement: regions of high curvature are the most informative in con-
tour images. In the abstraction step, it is important to identify one’s assumptions and potentially additional
or alternative variables that might be important in model revision (should that be necessary). In Attneave’s
paper, this is addressed in the discussion and conclusions, where he suggests that other information (such
as texture, color, contrast, and similarity) may potentially also be important, but his results were focused
specifically on curvature. Identifying the simplifications imposed is an essential step in abstraction. Models
are rarely completed with a single effort; more frequently, a number of iterations are needed. In order to
facilitate these iterations, it is good to have a clear picture of what was included and what was left out of the
model during the abstraction step. One might then revisit these variables during revision, and decided that
one or more of them is needed in order to produce a models with the fidelity desired.

2. Model building via an algorithmic process. The algorithm used to build the models is slightly more
complex than that used simply to draw Attneave’s cat. First, Attneave wanted to test the hypothesis that
curvature was indeed important. This was done by experiments with a large number of subjects who looked
at simple closed curves (think potato-shapes here), where subjects were asked to place points on the curve
such that they could re-draw the curve using only the points selected. From this, he was able to determine that
his abstraction (segments with high curvature contain the most information) appeared to have validity. This
provided good evidence from which he could generate a “model building” algorithm. Without belaboring it
too much, the algorithm would look something like the following:

a. For a given contour image, determine the regions of highest curvature. Attneave did not investigate the
process of generating contour images themselves in detail. However, he did roughly sketch out how one
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might use edge detection to eliminate redundant information to determine where contours for figures
might be drawn.

b. Identify the highest-curvature regions of the contour figure. You may have learned in calculus that the
curvature is the rate of change of the vector tangent to a curve as one translates along the curve. For
plane curves, this can be expressed by

| x/y// _ y/x//‘
B (xlz _|_ ylz)%
While Attneave did not compute the local curvature via this method, it is not difficult to compute. In
Fig. 1.5(a), a version of Atteneave’s cat is plotted. In Fig. 1.5(b) the absolute value of the curvature is
plotted as the color scale along the outline of the figure known as Attneave’s cat. While this image rep-

resents the post-processed version of the contour image, it is nonetheless clear where the high-curvature
regions of the figure reside.

K (1.5)

c. Keeping only the highest curvature regions in tact, replace the remainder of the components of the
outline with straight-line segments connecting the endpoints of each high-curvature segment. Again, the
specifics of the method were not detailed by Attneave, but one could imagine using thresholding on the
local curvature as a method to decide what to keep and what to eliminate. Again, referencing Fig. 1.5(b),
it is clear that the purple regions represent nearly zero-curvature components of the outline.

While indeed a very simple algorithm, it is nonetheless an algorithm that can be applied with little un-
certainty to nearly any contour image. Some images (e.g., a circle, which has constant curvature) would be
changed very little, whereas others (such as the image of the cat) would be significantly altered.

3. Concrete realization. The realization process is, literally, just “realizing” the model that has been
constructed. This means after identifying the appropriate abstractions and algorithm, and then using the
algorithm to take the input data (in this case, a contour outline image) to generate an output (in this case, the
simplified contour outline).

4. Revision. While no specific revision step is conducted in this particular modeling exercise, note that a
number of important assumptions were identified by Attneave in his original (1954) paper. Attneave’s paper
has been revisited many times by other researchers, and some of these have found that the neglected variables
listed by Attneave were found to increase the descriptive ability of the models that they form. So, although
model revision was not a component of Attneave’s model (at least, no discussion of alternative models was
discussed in the paper; whether or not revisions were made in his initial work is not known), because he did
describe a number of assumptions and neglected variables, other researchers have been able to extend his
model to improve (to some extent) Attneave’s original model.

Attneave’s cat provides a useful, and novel example of the problem solving process, with a focus on
model development. It is good to think about mathematics as being only one component of problems solving
and modeling. For many practical scientific and engineering problems, however, mathematics is the natural
language for expressing models. A solid background in mathematics will both provide useful modeling tools,
as well as experience with the problem solving process in general. Even if you never again use mathematics
in problem solving (although this is hard to imagine for most scientists and engineers), the process of learning
mathematics is, itself, a compelling method to practice the problem of problem solving. Problem solving
skills, once learned, have considerable transferability. Learning and practicing mathematics will inevitably
make you a better problem solver, regardless of the kind of problems that you are presented with.
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(a) (b) % (c) curvature

Fig. 1.5: Attneave’s cat. (a) A smooth contour outline of a cat. (b) The post-processed contour outline of Attneave’s cat,
expressed as straight lines connected by segments of high curvature. This figure is generated by applying the algorithm
described in the text. (¢) For reference, the rainbow color scale indicates the (normalized, absolute value) curvature associated
with the outline of the figure in (b). Areas of high curvature are yellow to red; areas of low curvature are blue to purple.

1.8 Problems

1. At the head of this chapter is the quote “the best model of a cat is another cat, preferably the same
cat”. While the quote is somewhat humorous (and has the benefit of mentioning cats), it also has substan-
tial meaning. In the context of thinking about systems, and abstractions of systems, write a few sentences
explaining what this quote is meant to point out.

2. Another quote at the start of this chapter is “all models are wrong; some are useful”. In the context
of thinking about systems, and abstractions of systems, write a few sentences explaining what this quote is
meant to point out. In particular, explain how it can be true that “all models are wrong”? Is there an example
of any “model” that is not wrong? (Hint: refer to the quote repeated in problem 1.)

3. Circles have fascinated humankind for
literally thousands of years. Both the Babylo-
nians and the Egyptians used approximations
to pi, the ratio of the circumference of a circle
to its diameter. But it was Archimedes of Syra-
cuse (c.287 c.212 BC) who really got the ball
rolling (so to speak) on the topic. His idea was
to inscribe regular polygons inside the circle.
With increasing numbers of sides, the area of
these polygons would, he posited, get closer to
the area of the circumscribing circle. It is not
difficult, using modern trigonometry, to show

- - . ) L . .
A(r.n) = nr? cos <7> sin (7> (1.6) Fig. 1.6: Polygons inscribed in a circle.
n

where n > 3 is the number of sides of the inscribed polygon. We can think of A(r,n) as being a model for the
area of a circle with radius . Compute the area of a circle of » = lcm for n equal to 3, 4, 5, 10, 30 and 50,
and compute the relative error (A(1,n) — ) /x for those values. Then answer the following questions.

a. Does this model appear to be a sound and useful model?
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b. Can you show that this model converges exactly to the area of a circle as n gets arbitrarily large?
(Hint: for small 6, sin(6) = 6).

c. Suppose you had a particular application in mind where you wanted to use A(r,n) to estimate the
area of a circle. What kinds of considerations would you need to make in order to be able to choose
the value of n you would use?

4. Chaotic Behavior. For certain kinds of phenomena, ranging from insect populations as a function of
time to the wear rate of well-drilling bits (cf. Li and Yorke, 1975), the following model can relate the state
at discrete intervals

x(n+1) =rx(n)[1 —x(n)] (1.7)

Where r is a growth rate parameter, and » indicates the number of the time period (each period with the same
interval, say, At), and x € [0, 1]. Equations of the form x(n+ 1) = F(n) (like the equation above) relate the
current state of a system to the previous state. They are called difference equations; Eq. (1.7) in particular is

sometimes called the logistics equation.
Starting in the 1960s, some researchers began to realize that such sim-

ple equations sometimes yielded surprisingly complicated (and com- Case| x(1) | r
plex in the sense described earlier in the chapter) behavior. In particu- 1 0.5 1
lar, there are values for » where Eq. (1.7) becomes very sensitive to its 2 0.5 2
initial value. This expression is so simple that it can easily be coded up 3 0.5 3
in a computer language, or even computed on a spreadsheet program. 4 05 (399
Using a method of your choice, compute and plot the solutions up to 5 10.5001]3.99

(n+ 1) =50 given x(1), In other words, you will need to compute a
sequence of 49 values of Eq. (1.7) when given the first value. For the

parameters x(1) and r that should be used, refer to the table below.
Once the solution is determined, compare cases 1 and 2. What is different between them. Case 3 has yet

again different behavior— how would you describe the behavior in time (i.e., steps) of Case 3? Finally, note
that Cases 4 and 5 are similar, except that the initial value is different by 0.001 (or about 0.2% of the initial
value). Do the two cases give similar or different behaviors in time?

Table 1.1: Values for models using
the Logistics difference equation.

5. Models of probability. The concepts for understanding probabilistic outcomes (e.g., the result of
flipping a coin or tossing a six-sided die) was one of the first physical-conceptual systems for which intensive
study of via models was applied. The history of the topic indicates that improving ones odds at gambling
was one of the motivations for serious study of the topic. The statistician A. Hald (2003) has stated

It was not until the beginning of the 16th century that Italian mathematicians began to discuss the odds of various
outcomes of games of chance based on the fundamental idea that the possible outcomes of a single game are equally
likely.

While problems in probability theory can become quite challenging, here we propose a simple system for
the purposes of thinking about modeling the probabilities involved. In particular, suppose one has an urn
(the urn is, for some reason, the classical reservoir supposed in such problems!) that contains three balls: one
yellow, one red, and one blue. The question is: What is the probability that the yellow ball is the first one
picked if one selects three balls (one at a time) from the urn.

Now, this problem is really not about computing the probabilities involved (most people’s experience
would allow them to guess the probability to be 1/3 without much additional thought), but to develop a
model that explains the probability. While there are many different “philosophies” regarding probability, we
will not dwell on that here. Instead, the following is proposed. There are three balls, and they are selected
one-at-a-time from the urn. We assume that the order that the balls appear is important. There are only a finite
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number of possible combinations that can be selected (e.g., blue, yellow, green is one; green, yellow, blue is
another that is distinct from the first example). If we assume that all outcomes of three balls are each equally
likely, then enumerating all possible outcomes will allow us to answer questions about the probabilities of
each outcome. For this problem, please do or answer the following.

a. Enumerate each possible outcome (hint: there are 6 total possible outcomes).

b. Of the total number of outcomes, how many of them represent the cases where the yellow ball is drawn
first?

c. What is the ratio of the number of cases where the yellow ball is drawn first to the total number of cases?

d. In this model, what is the primary modeling assumption that allows us to actually compute the probabil-
ities?

e. Are there any additional assumptions regarding the process described that should be true so that the
analysis is valid?

6. Consider the situation described in problem 5. Now suppose that you want to know the probability of
the selecting the balls in the following order: red, blue, yellow. Can you describe the modeling process (i.e.,
write a short narrative) that explains how you arrived at your result?

7. Consider the situation described in problem 5. Now suppose that you want to know the probability of
the following result: either the red or the yellow ball is selected first. What is the probability of this outcome?
Can you describe the modeling process (i.e., write a short narrative) that explains how you arrived at your
result?

8. Consider the situation described in problem 5. Now suppose that you want to know the probability of
the following result: the first two balls selected are red and yellow, but in either order (yellow then red or red
then yellow). What is the probability associated with this outcome? Can you describe the modeling process
(i.e., write a short narrative) that explains how you arrived at your result?

9. Consider the situation described in problem 5. Now suppose that you actually have a total of four
balls: yellow, red, blue, and green. Can you use the method described for 5 to determine the probability of
the yellow ball being selected first? While this method is convenient because it allows one to easily compute
the probability of any possible outcome, can you see any disadvantages of this method (where each possible
event is explicitly identified)?
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10. Describe in words as concisely and clearly as you can the

problem of overfitting a data set. Time | (T —To) | (T —To)
11. Suppose you run two experiments that show the increase Exp. 1 | Exp.2
in temperature (7 — T) at ten evenly spaced times using infrared 0 -0.110 | -0.110
thermometry. Your data sets are given in the Table 9. 1 1.100 0.832
. . 2 1.835 5.035
a. Start with data set number 1, and fit a line (f;(x) = ax) and 3 2347 6.547
a quadratic (of the form f>(x) = ax? + bx to the data set, 4 2'009 6.809
and compute the associated coefficient of determination (also 5 5'771 1(; 771
called the correlation coefficient) r* for both fitted curves. 6 6‘208 11.008
You can do this in most spreadsheet programs, or in a com- 7 li 198 13:765
puter language. Which curve fits the data better? 8 12010 | 15211
b. Now use the functions fitted to the previous data (f; and f5) 9 16.986 | 17.215
to fit the data in experiment 2. Again, compute the value of 10 20.420 | 19.200

r? for both fitted curves. Which curve fits the data better? If

you were planning to generalize a model from experiment 1  Table 1.2: Two experiments measuring
to use as a fit to subsequent experiments, on the basis of what temperatures.

you know, which one would you choose — f; or f»?

12. Information. The concept of information was brought up in the text. One way of thinking about
the information content of model is to consider how difficult it is to describe. To make this concrete, think
about a base-2 system of digits. Consider 5-digit integer numbers represented in base-2 format. Each such
number has the form "XXXXX” where each “X” is either a “1” or a “0”. If it is a “1”, then one sums up a
unit of 20"~ where n represents the numerical value of the position of the digit starting from the far right.
Thus, the binary digits “10010” represent the decimal number 2# 42! = 17. The information in such a set of
digits is just the number of digits (which is close to the logarithm of the maximum number expressible in the
system—e.g. log, 11111 = 4.95, or approximately 5 binary digits or bits). With this in mind, please answer
the following questions.

a. How much information is there in the binary number 10010? How about 11111?
b. Which contains more information— the binary number 11111 or the decimal number 31?

c. Suppose I send a message containing a single binary digit that can be either a 1 or a 0. How much
information in bits is gained by the person who receives my message?

d. Consider the following two examples of a 5000 digit binary number. Case (i) each digit is generated
randomly with a coin toss and written down as a 1 (heads) or O (tails) until 5000 digits are created.
Case (ii) a number consisting of 5000 repetitions of the numeral “1”. (Hint: Can the second one be
compressed some way that uses less than 5000 digits to communicate with no loss of digits? Can the

first one?)

e. In the answer to your previous question, does the concept of regularity of the two numbers involved
make a difference in your treatment of them?

13. As briefly mentioned in this chapter, some philosophers view language itself as a model of reality. In
a few sentences, describe what this might mean— that language is itself a model. Reference the discussion on
the properties of models and modeling, and attempt to describe the process of abstraction, model building,
realization, and revision as it might apply to a natural language by providing examples.

14. Read the paper titled What is complexity science, really? by S.E. Phelan (Phelan, S.E.: What is com-
plexity science, really? Emergence 3(1), 120-136 (2001)). Phelan identifies three philosophical frameworks
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in which science might be defined and interpreted. What are these? Does the paper suggest that any particular
framework is best?

15. Read the paper titled This is not a universe: Metaphor, language, and representation by Liliane
Papin (Papin, L.: This is not a universe: Metaphor, language, and representation. PMLA 107(5), 1253-1265
(1992)). Papin discusses some of the challenges that language poses in science. In your own words, what
do you think is the main point of the paper? In other words, what is the message that Papin is attempting to
communicate regarding language and science?



“A bad review is like baking a cake with all the best ingredients and
having someone sit on it.”

Danielle Fernandes Dominique Schuelein-Steel, fourth bestselling
fiction author of all time

Mathematical Definitions, Concepts, and Review

Almost everyone who uses this text will have some background in mathematics; it is assumed that this
background includes advanced algebra, introductory calculus, linear algebra, and an introductory course in
ordinary differential equations. The purpose of this chapter is to review a host of definitions, concepts about
mathematics, and some of the basic results learned in previous coursework. The material presented here is
not meant to be exhaustive, but is focused primarily on elements that will be useful in the remainder of the
text.

Because the presentation of this chapter is specific to ideas that arise in the remainder of the text, the
presentation is somewhat an agglomeration of important topics rather than an exposition focused on one
or two main ideas. In a very few instances, there is the introduction of material that may not have been
covered in undergraduate mathematics; for this material, however, the necessary background is only what is
described in this text. Many of the topics in this chapter may be safely skipped by those who do not need a
reminder about mathematical definitions, concepts, or a review of basic of linear algebra and calculus.

2.1 Sets and Set Builder Notation

While will not make extensive use of the concept of sets, we will use set builder notation as a convenient and
compact way about discussing intervals on the real line (or higher dimensional Euclidean [sometimes called
Cartesian] 2-D and 3-D spaces). The version that is adopted for this text will be simpler than is possible
for more general settings. For example, there are symbolic representations for the conjunctions “and” and
“or” in set builder notation; we will opt for simply using the words themselves to keep the new symbols to a
minimum. The following are the elements of set builder notation that we will use. While some of these may
be defined further below (e.g., the word set), here the goal is simply to describe the notation.

1. Set. A set is denoted using curly braces, “{ }”. Thus {a,b, f} is a set containing three items, a, b, and f.

25
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6,9

2. “Such that” symbol. In set builder notation, the colon “:” is used to indicate the concept of “such that”
or “with the property that” or sometimes “as follows”. When one sees the colon after a variable (say, the
variable x), it might be useful to think of this as indicating “create the set of x values such that...”

3. “Is an element of”” symbol. We use “€” as a substitute for “is an element of”’. We will define element
more completely below.

4. “Is not an element of”” symbol. We use “¢” as a substitute for “is not an element of”.

5. Predicate. A predicate. In English grammar, is a part of a sentence that states something about the
subject. In set theory, the word predicate has same notion. Thus, a predicate can be interpreted as a rule
or formula that must be applied. Suppose the predicate is given by the equation (or inequality) @, and
we are asked to construct the set of all values of x such that @ is met. To be concrete, let’s assume the
correspondence @ < x > 1. We could write such a set, call it A, as follows

A={x:x>0} 2.1)

This is read as follows: “create the set A where A is equal to the set of all numbers x such that x > 0”.
There is an implication here that we know what kind of number x should be. Let’s assume that x is meant
to be an integer. If we wanted to include this explicitly in the set statement, we could rewrite it to read
the following.

A={x:x>0andxe€ Z} (2.2)

Here, Z is the special symbol reserved to indicate the set of integers.

Although we will not use them much, one can define the statement “for all” by V an the statement “there
exists” by 3. For example, the even integers greater than zero could be described in set builder notation as

{n: (3k)k € Z and k > 0 and n = 2k} 2.3)

This would be read as “create set of all values n as follows: there exists k values that are integers and are
greater than zero. The set of n values is found by taking two times the set of these k values.” This concludes
the number of ideas and symbols that we will adopt via set builder notation.

Now that we have the notation established, we can proceed to define some of the basic features of sets
(we will be ultimately be primarily interested in the applications of set notation to intervals on the real line).

Definition 2.1 (Element). An element of a set (also called a member of a set) is the generic name associated
any one of the objects contained by the set. Often the symbol x is used to denote the element of a set (although
any symbol could be used).

Definition 2.2 (Set). A set is a collection of objects; more specifically for our purposes, a collection of
mathematical objects. Sets can contain a finite number of objects, or an infinite number of objects.

Definition 2.3 (subset). A ser where the elements of of the set are also elements of some given set. To be a
proper subset, the subset must not contain all of the elements of the given set.

Definition 2.4 (universal set). Many problems are created when attempting to define a completely general
universal set; in the broadest sense, they can lead to paradoxes in formal set theories. For our purposes
(which is primarily to discuss intervals on the real line), we adopt a universal set that is a well-defined entity
that avoids such problems. Specifically, we take U to be the real line in one dimension (or the 2-D plane or
3-D space in higher dimensions). One may also define U to be some subset [ of the real line, as long as all
discussions relate to intervals that are proper subsets of 1.
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Even though our use of set theory will be minimal, it is still useful to define the basic operations of the union
and intersection of sets. These are as follows.

Definition 2.5 (union of sets). The union of two sets A and B is the set of elements C belonging to either
of the two sets (without repetition). This is frequently denoted by = A U B. If the elements of the sets are
represented by x, this can be written as AUB = {x : x € A or x € B}. Extensions to three or more sets can be
done by operating on two sets at a time iteratively.

Definition 2.6 (intersection of sets). The intersection of two sets A and B is the set of elements C belonging
to both of the two sets. This is frequently denoted by = AN B. This can also be written as ANB = {x:x €
A and x € B}

Note that the concepts of union of sets and intersection of sets correspond to the English conjunctions and
and or, respectively. Being explicit, the statements D = A UBUC with x € D implies that x is in set A or
in set B or in set C (which could include any intersections among those sets). In contrast, the statement
D =ANBNC with x € D implies that x is in each of A, B, and C.

Definition 2.7 (compliment of a set). Suppose C = AU B. The compliment of C in universal set U consists
of everything in U that is not in set C. This is often written as C' = U\C (where the backslash is read as
subtraction or removal). This can be alternatively written as C' = {x:x € U andx € Aand x ¢ B}. If U
defined is some subset of the real line (or higher dimensional spaces), then sometimes the compliment is
called the compliment relative to U .

These concepts are presented graphically in Fig. 2.1. One additional definition is made here, in part because
it helps to clarify a notation that is often observed in the mathematical literature.

Definition 2.8 (Cartesian product of sets). The Cartesian product of two sets A and B, is the set of all
ordered pairs (a,b) where a € A and b € B.

AxB={(a,b):a€A and b:c B}. (24)

This latter notation will arise when we discuss the Euclidian plane and Euclidian space.

2.1.1 Numbers

The concept of numbers is a intuitive and natural thing that we have all been using since we were little and
learning to count out objects on our fingers. However, numbers themselves are an interesting topic; there is
even an branch of mathematics called number theory that studies the integers. While the study of integers
may not sound particularly exciting, it is actually an area of intense study! For instance, number theory has
been used to find very large prime numbers (numbers that are not the multiplication of two smaller numbers).
Such numbers are of great value in use in public key encryption schemes an other kinds of computer security.
In fact, there are several prize currently offered (of about $150 K and as of 2021) to find a prime number with
10 or 100 million digits. The largest prime number currently known (as of January 2022) is 282389933 _ 1 a
number that has 24,862,048 digits in base 10.

It turns out that the discussion of the various of sets of numbers one might encounter in applied mathe-
matics is a good way to discuss sets and intervals in a way that has familiarity.

The most frequently used sets of numbers are as follows.



2 Mathematical Definitions, Concepts, and Review

(b)

Fig. 2.1: (a) The union of two sets. (b) The intersection of two sets. In these diagrams, A and B are sets, and these two sets are

contained in the universal set U. Thus, A and B are subsets of U

N — The “natural” numbers. These are the set of positive integers N = {1,2,3,4,...}. Some definitions
include zero; to denote that, the convention is to use the symbol Ny = {0,1,2,3,...}.

Z - The integers. These are the set of all positive or negative integers, including 0 Z = {... —
2,—1,0,1,2,...}.

Q — The rational numbers. The “Q” here stands for quotient, or, in other words, the ratio of two num-
bers. The rational numbers are formed by the set of all possible ratios of all integers p and ¢ in Z so that
all pairs for a ratio p/g which is a member of Q. Note that there is a restriction; ¢ # 0. Also, because we
can have g = 1, the integers are a subset of the rational numbers.

P — The irrational numbers. In short, the set of all numbers that cannot be expressed as a rational
number, i.e., they are not elements of Q.

R — The real numbers. The real numbers are the set of all things that we might think of as conventional
numbers; in other words, it contains as subsets all of the sets of numbers defined previously. For our
purposes, the real numbers can be though of most simply as the union (or the combining of) the rational
and the irrational numbers (in mathematics this might be written R = Q UP). The real numbers are
what we use in principle when doing computations relating to physical systems. The real line can also
be though of as the 1-dimensional Euclidian space, where the Euclidian spaces are defined in the next
section.

C — The complex numbers. The complex numbers are a generalization of the concept of number that
contain a real and and imaginary part. Most of us have been introduced to the idea of complex numbers
early in our mathematical career; however, they frequently instill much unease and consternation. As
with many mathematical constructions, however, the “reality” of complex numbers is not tremendously
important. What is important is that they meet certain algebraic necessities assuring mathematical con-
sistency (they form a commutative algebra), and, from a practical standpoint, they are useful.
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A graphic indicating how these number systems (as sets) relate to one another is given in Fig. 2.2. Note
that, for each of these number sets, the values oo are not part of the set of numbers! There are number
sets (known as the extended reals) that contain o as a value, but these sets will not be used in this text. One
extension to these sets are the sets of higher-dimension Euclidian spaces; this will be discussed below.

These sets of numbers have interesting properties and histories of their own. For example, the irrational
numbers were first discovered by the Greeks. In particular it is thought that a Pythagorean (i.e., a member of
a Greek math cult following the tenants of Pythagoras), named Hippasus of Metapontum first proved this.
Strangely, although it is the Pythagorean theorem that allowed Hippasus to show that irrational numbers
exist, this went in stark contradiction to the Pythagorean belief that all mathematics could be expressed
through ratios of integers. It is said that Hippasus discoverd this startling fact while at sea, and his fellow
Pythagoreans were so upset by the revelation that they threw him overboard! While the validity of this story
is certainly suspect, what can be said is that revolutions in the understanding of numbers has frequently been
met with substantial resistance.

While many think of the complex numbers (which will be reviewed below) as presenting challenges to
concrete ways of thinking, even the real numbers are a bit stranger and philosophically more challenging
than one might expect. Some of the most contentious issues in defining modern mathematics has come from
attempts to understand the set of real numbers, and many of these challenges arise via the subset of irrational
numbers. In particular the critical notions of limits and completeness of sets, topics that we will touch on
(lightly) later, that took until the 19th and 20th centuries (see Snow (2003) for more details) before the
concepts were well understood. Before moving onto other topics, the following example illustrates how the
concept of real numbers is more complicated than it may appear on the surface.

Example 2.1 (0.999... = 1). We have all be exposed the idea of repeating decimal numbers, but
the characteristics of such numbers can be elusive. For example, consider the sequence of num-
bers (we will define sequences more formally in §2.5) that approach the value 1 as follows s =
{0.9,0.99,0.999,0.9999, ...}, or more generally s = {0.(9),,,n € N}. Clearly this sequence gets closer
and closer to 1 as we add more repeats of the numeral 9 (i.e., increase n). Also, if we fix any small
number, €, then, no matter how small epsilon is, we can always take n large enough so that we get
closer than within € to the value 1

1-0.09), <& 2.5)

In some sense, then, is 0.(9), equal to 1? This seems like it would be a curious thing, but we can
show that it is true. The following is an informal illustration. There are proper, concrete proofs for the
somewhat ad hoc illustration below. Nonetheless, the point is made, and the result is correct, as odd
as the result may seem!
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Fig. 2.2 The number systems,
from the perspective of sets.
In this figure, each oval rep-
resents a set; an oval that is
contains in another (larger)
oval is a subset of the contain-
ing set.

x=0.9999...
10x=9.999...
10x =940.9999...
10x=9+x
9% =9
x=1 (2.6)

The explanation for this involves the idea of convergence of a sequence and completeness of a set
to fully understand. For now, we will put this notion aside and simply recognize that real numbers
(particular those that are irrational or are repeating decimals) are trickier to understand than rational
numbers are! There is even some more philosophical discussion about in what sense real numbers are
(objectively) real. Because of the various concepts of infinity associated with the real numbers, they
sometimes illustrate behavior that is counter intuitive (the fact that 0 X o is not defined is one such
example; it is easy to construct examples where 0 X oo is equal to any number that you choose).

2.1.2 Euclidian Space

Euclidan space might best be described, somewhat colloquially, as the 3-dimensional space that we are all
familiar with. Before continuing, in order to understand Euclid’s definitions, we must first understand what
an axiom is.

Definition 2.9 (Axiom). An axiom is a statement about a physical or mathematical system that is assumed
to be true, but cannot be proven to be true within the system itself. Sometimes axioms are called laws or
principles or postulate; these alternatives names are used historically or because of disciplinary differences
in terminology (e.g., between physics and mathematics).

Now we are in a position to define Euclidian space. Euclidian space is a space that we are used to thinking
about in, say, ordinary geometry. Euclidian spaces subscribe to the five axioms of Euclid’s Elements. These
are as follows.

1. A straight line may be drawn between any two points.
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. Any terminated straight line may be extended indefinitely.
. A circle may be drawn with any given point as center and any given radius.

. All right angles are equal.

AW

. For any given point not on a given line, there is exactly one line through the point that does not meet the
given line.

where the language here is not identical to that of Euclid, but the concepts are (in particular, this version
of axiom 5 is known as Playfair’s axiom (Playfair, 1795, p. 7)). So, why invoke Euclid at this juncture? It
turns out that most of the mathematics you have done have been done in Euclidan space. In one dimension,
Euclidian space is the real line; in two dimensions, the plane; and, in three dimensions what we often use as
our model of space. Using set notation, in 1-, 2-, and 3-dimensions, we have

1-dimension R=R'={x:xcR} 2.7)
2-dimensions RxR=R>={(x,y):xcRandy € R} (2.8)
3-dimensions RxRxR=R>={(x,y,z):x€ Randy € Rand x € R} (2.9)

Here, the Cartesian product defined above has been used in defining R? and R?.

Sometimes Euclidian geometry is also called flat space; this is to say that it has no curvature to it. Physi-
cists (in particular A. Einstein) have shown that space is not, in fact, flat, but rather curved because of the
effects of gravity. Regardless, for most systems that are terrestrial (i.e., small enough) and not subject to
need for extremely accurate measurements, we may think of space as being Euclidian. What these spaces
have in common is that our conventional notions of geometry (parallel lines do not intersect; all right angles
are equal in angular measure) remain true in this model.

It should be noted that coordinate systems are independent of the underlying space that they describe.
The conventional coordinate system that we use to describe Euclidian space is the Cartesian one, named
after the French philosopher and mathematician René Descartes, who first described it. In fact, sometimes
Euclidian space is called Cartesian space. However, some care is needed. A Cartesian coordinate system is
the rectangular coordinate system that we are all familiar with (Fig 2.3(a)). The coordinate system may be
a very convenient one, but it should not be conflated with Euclidian space itself. Coordinate system are a
convenience in which each point may be given a unique label; but the geometry of the coordinate system does
not necessarily reflect the geometry of the underlying space. For example, one may also adopt the familiar
cylindrical coordinate system (Fig. 2.3(b)) to describe Euclidian space. This can be convenient, when, for
example, one is modeling an object in Euclidian space that is itself cylindrical. While the two coordinate
systems are different, the underlying space (and the geometric principles that are assumed to be true on it)
remain unchanged.

While not an important concept for the material in this text, it is also possible that the underlying space
itself is not flat (i.e., it is not Euclidian). For example, a spherical space is one that you may have heard
of by analogy with the globe; in such a space, the five axioms of Euclidian geometry must be amended
to create a consistent system. The discovery of non-Euclidian spaces (e.g., such as the spherical space just
mentioned, or the hyperbolic spaces) was made in the early 1800’s by mathematicians in Europe and Russia.
The discovery of such unique geometries eventually diffused into popular culture, and represented a true
revolution in the way that mathematicians, scientists, and the public at large viewed science and scientific
discoveries. As an example of the influence in popular culture, the ideas of non-Euclidian geometries were so
widely known about that the author H. P. Lovecraft adapted the unique geometries to describe otherworldly
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Fig. 2.3: Two coordinate systems for a 2-dimensional (2-D) Euclidian space. (a) The Cartesian coordinate system (CC BY-SA

3.0, https://commons.wikimedia.org/w/index.php?curid=603366. (b) The cylindrical coordinate system.

Regardless of the coordinate system used to label the points in Euclidian space, the space itself remains unchanged. Thus, the
five axioms of Euclidan geometry apply to both coordinate systems.

settings in his fictional writing. As with the development of set theory (discussed very briefly at the end of
the next section), the discovery of non-Euclidian geometry helped spark the revolution in mathematics that
started in the early 19th century and lasting through the middle of the 20th century.

2.1.3 Intervals on the Real Line

The notion of an interval can be described in the language of sets, and the concept of intervals is one that
we will used frequently. Below the concepts of open, closed, finite, and unbounded intervals are discussed.
Analogous concepts apply for higher dimensions, but no discussion of those extensions is attempted at this
juncture. Similarly, set notation is discussed, but set theory (other than the basic notion that sets exist and
have elements; and we cover the basic operations of unions and intersections). It is not an overstatement to
say that set theory proper forms the basic underpinning of modern mathematics. It is has also been one of the
most difficult and contentious parts of mathematics, and contains controversies (or differences in approach
and opinion) that are continue to generate discussion and research. While we will not go into set theory
proper, or the details of why it has been such a challenging component of mathematics, we will briefly
describe what gave rise to some of the difficulties at the end of this section.

Definition 2.10 (Interval). An interval is a set containing all of the real numbers between two specified real
numbers a and b; assume that a < b. Intervals may be open, closed, or a mixture of open and closed. A
closed interval includes the end points, e.g.,

I={x:a<x<b} usually denoted I = [a,b]
whereas an open interval does not

I={x:a <x < b} usually denoted I = (a,b)
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One curiosity about open intervals such as (a,b) is that they contain a maximum or a minimum real
number. By definition, the open interval does not include the end points a and b. Thus, for example, the
open interval (1,2) contains all of the numbers greater than one, and all of the numbers less than 2, but not
1 or 2. Another way to describe an open interval, then, is as follows. For a moment, let’s consider only the
minimum part of the interval specified by a. Now, suppose that we select a number in the interval as close
to a as we like; let’s call this number c. By definition, ¢ —a > 0. We could then, say, select an even smaller
number half way between a and ¢, and call this d = (¢4 a)/2. This number is also in the interval because
d—a= %(c —a) > 0. This argument can be repeated indefinitely, and thus there is no smallest number in
the open interval. A similar argument can be made for the maximum number in the open interval.

Intervals can also be half-open (or half-closed, which means the same thing) in the obvious way, e.g.,
I ={x:a<x<b} is half open because the lower bound is not included. .

Finally, note that intervals can be unbounded. An unbounded interval is defined as follows.

Definition 2.11 (Unbounded interval). An unbounded interval is a set containing all of the real numbers
greater than or less than some specified real number, a. Such intervals can be open or closed; thus I = [a, o)
is considered unbounded and closed, whereas I = (a, o) is unbounded and open.

Accounting for various possibilities defined above for intervals (and defining the empty and degenerate
intervals), then intervals of the real numbers line can be classified into eleven different types (cf. Craig (1969,
Chp. 3)) listed below.

Empty:
[b7a] = (bva) = [bva) = (b7a] = (a7a) = [a,a) = (ava] = {} =g
Degenerate:

[a,a] = {a}

Proper and bounded:

Open: (a,b) ={x:a<x<b}
Closed: [a,b] ={x:a<x<b}
Left-closed, right-open: a,b)y={x:a<x<b}
Left-open, right-closed: (a,b) ={x:a<x<b}
Left-bounded and right-unbounded:
Left-open: (a,+e0) ={x:x>a}
Left-closed: [a,400) ={x:x>a}
Left-unbounded and right-bounded:
Right-open: (—o0,b) = {x:x < b}

Right-closed: (—oo0,b] = {x:x < b}
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Unbounded at both ends (both open and closed):
(—oo , +oo) =R

This last interval (the real line) is listed as both open and closed. This is a technical detail that creates no end
of discussion on mathematics forums on the internet. The explanation is not easy without invoking additional
mathematical structure (such as fopology). In short, however, it might be described something like this: The
real line contains all possible real numbers; thus is it closed with respect to the real numbers. However, there
is no maximum nor minimum real number on the real line, thus (as for the discussion of the open interval)
the real line is also open. While this sounds like a paradox, it is also a statement that binary options (“true”
or “false”) in mathematics are not always necessary; sometimes there is a third option which is “neither true
nor false”. There is a saying in mathematics that “A door must be either open or closed, and cannot be both,
while a set can be open, or closed, or both, or neither! (Munkres, 2014, p. 91). While this may sound a bit
noncommittal, the reality is that these concepts are both well defined and useful.

A short note about set theory. We have used set notation above, but not invoked set theory per se. You
may have learned a little about set theory even in grade school — the ideas at that level are usually to discuss
how one might group objects together (creating a set), and then compare the properties of various sets. On the
surface, this seems deceptively simple. However, the goal of developing a robust set theory led to one of the
most interesting periods of mathematical research in the history of mathematics. By robust here, something
specific is meant. This means that the theory must propose sufficient axioms such that it is both complete and
consistent. The word complete in this context means essentially that “every true statement in the system can
be proven from the axioms”. The word consistent means essentially “every proper statement (or question if
you prefer) within the system can be shown to be either true or false.” The hope was that because set theory
was so fundamental, then, in principle at least, a powerful enough version of set theory could be the basis
for deriving all of mathematics (at least, in principle). Quite unexpectedly, such a set theory was ultimately
proven to be impossible.

Early work on set theory was done by many mathematicians; but in particular the work by two German
mathematicians — Richard Dedekind and George Cantor — from about 1870 to 1900 paved the way for what
is sometimes referred to as Naive set theory. A good and short introduction to this history can be found in
(Ferreir6s, 2022). The modifier “naive” here is not a slight; it means only that the theory was not cast in
the language of formal logic. While this set theory was incredibly useful, Cantor was alarmed to find that
it was not consistent — in other words, he found that paradoxes could be constructed in the theory. Without
recounting the entire history of set theory, the inability to generate a paradox-free set theory led to a crisis in
mathematics in the early 1900’s. This crisis, while long in the making, was made most apparent by Bertrand
Russel who described the paradox in 1901. The Russel paradox is a mathematical statement much like the
so-called liar’s paradox, which make the conflicting and self-referential statement “This sentence is not
true”.

This kind of paradox would have deep and lasting ramifications for mathematics. While set theory was
ultimately repaired to some degree by the mathematicians Ernst Zermelo and Abraham Fraenkel in the 1920s
(known in mathematics as the ZFC set theory). The statement “to some degree” must be qualified here. The
ZFC avoids the kinds of paradoxes that plagued earlier versions of set theory. However, in the 1930s a
mathematician named Kurt Godél proved a rather unexpected result. Godel was able to show, roughly, the
following: Any axiomatic system which is complex enough to describe ordinary integer arithmetic is either
incomplete or inconsistent. In other words, if our axioms are consistent (i.e., do not lead to paradoxical
or undecidable statements), then in every model of the axioms there is a statement which is true but not
provable. While this result was somewhat of a blow to the idea of generating an overarching theory for
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mathematics, the actual impact is still debated. First of all, the proof used by Godel was of a particular
flavor known as first order logic. Thus, it is unclear if more capable logic languages suffer the same fate.
Secondly, while the premier set theory, ZFC, must by Godel’s theorems either be inconsistent or have true
but unprovable statements, it is not clear that this has any practical import. For example, if I state “all
non-pterodactyls are not non-dinosaurs”, I have certainly uttered something true. Regardless, if I am not
interested in anything about dinosaurs (flying or not), then this true sentence is of no value to me. So, while
it might be impossible to prove all frue statements in ZFC, so far the such unreachable truths have not
created any practical problems (possibly because, like the example, they convey truths that are not relevant).
And, to date, nobody has found an inconsistent statement within the context of ZFC. Thus, ZFC has been
a useful tool in mathematics. The search for more powerful set theories continues as a topic of interest in
mathematical research.

2.1.4 Complex Numbers

Unlike, say, the natural numbers (which can be illustrated by collecting actual objects), the complex numbers
are a purely mathematical construct. That does not mean that they are not useful or interesting, however.
There are many examples of concepts that exist only mathematically, but are nonetheless useful for many
practical applications.

The complex numbers are an extension of the real numbers. Although almost everyone reading this text
has probably encountered them previously, it is useful to recap their basic properties.

Definition 2.12. A complex number assumes that there exists a mathematical object, called the unit imagi-
nary number, i, such that i = v/—1 so that ;> = —1. Every complex number consists of two parts, a real part,
and an imaginary part that is proportional to i. The conventional form for a complex number is a + bi, where
a and b are real numbers. The set of all complex numbers is usually denoted by C.

The rules for addition, subtraction, and multiplication are slightly modified from those of real numbers as
follows. First, addition and subtraction are done by adding and/or subtracting the real and imaginary parts
of a complex number independently. Therefore

(a+ib)+ (c+id) = (a+c)+i(b+d)
(a+ib)—(c+id)=(a—c)+i(b—d)

Multiplication of two complex numbers is defined as follows
(a+ib) x (c+id) = ac+ibc + iadi — bd
or, equivalently, grouping terms
(a+ib) x (c+id) = (ac — bd) +i(bc + ad)

The complex numbers are often represented as vectors on a plane, where the real part is plotted on the
horizontal axis, and the complex part on the vertical axis. In this representation, a complex number would
be represented by a pair of points, i.e., x+ iy < (x,iy). There are some advantages and disadvantages of
this, but it generally improves interpretation for problems with physical significance. When this formalism
is adopted, a complex number is frequently represented typographically as a vector, as in z = (x,iy). The
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Fig. 2.4 The complex plane.
Complex numbers can be
given a meaningful interpreta-
tion as vectors on a plane.

representation of the complex numbers in this manner requires mildly re-defining the vector dot product. We
define this in the following.

Definition 2.13 (The Complex Conjugate). For a complex number z = a+ ib = (a, ib), the complex conju-
gate is defined by z = a — ib = (a, —ib).

Definition 2.14 (The Complex Dot Product). For two vectors z; = (ay,ib;) and zp = (a2, ib;), the complex
dot product between z; and z; is given by

217, = (max +biby)

which has the advantage of being a single real number. In particular, this means that a vector dotted with
itself is defined by

z-7=(a,ib)-(a,—ib) = a*+b*

and the magnitude of a complex vector is defined by a rule that looks much like the rule for computing the
length of a vector on a plane

lz|| = Vz-2 = Va2 + b2

The recognition that complex numbers can be treated as vectors on a plane implies that they can be con-
veniently represented in polar coordinates. In fact, there are some significant reasons for doing so. To start,
define the length of the vector by the number r = ||z|| = v/a% + b2. Then, we have the following relationships
between the (a,b) and (r, 0) coordinate systems (Fig. 2.4)

r=+a*+b? a=rcos(0) ib = irsin(0) (2.10)

6 =tan"! (b> (2.11)
a
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> 2= r(cos(8),isin(8)) = r(cos(6) + isin(6)) 2.12)

In this representation, r is sometimes called the magnitude or modulus or absolute value of the complex
number, and 6 is called the argument of the complex number.

You may have seen Euler’s formula before; it is the formula that leads to the famous relationship e* = —1
(where, recall, e is the base for the natural logarithm). More generally, however, Euler’s formula takes the
form

e = cos0 +isin@ (2.13)

Although this formula looks truly remarkable, once we accept that the imaginary numbers are an acceptable
extension of the reals, the proof of this result becomes quite simple (we will examine that further when
we tackle infinite series). For now, we adopt the formula without proof. However, note that it allows a
particularly simple representation of a complex number z as given by Eq. ((2.12)) in the form

z=re'® (2.14)

As an interesting side note, this last formula allows one to make sense of the logarithm of a complex number.
Taking the natural logarithm of both sides of Eq. 2.14, we have

In(z) = In(re'®) (2.15)
=In(r)+i6 (2.16)
Noting that ¢® = ¢/(®+27) = (,1,2,..., then it is clear that there are generally an infinite number of

representations for the logarithm of a complex number

In(z) = In(r) +i(0 +2kx), k=0,1,2,... (2.17)

Although complex numbers have a helpful representation as vector quantities on the complex plan, they
are technically just an extension of the real number system. Therefore, it is not common to adopt a bold-face
type to represent them (as we have done above). In general, complex numbers are set in regular, italicized
script, (e.g., 7). Generally, the context prevents there from being any confusion. In future uses of complex
numbers, we will not use bold-faced script to represent them. Thus, the equation above would be more
properly written

z=re'® (2.18)

2.2 Functions

We all have been introduced to the concept of functions. When most people in college mathematics think of
a function, the first thing that comes to mind is a relationship that looks something like

fx)=x+2, x€[-2,2] (2.19)
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Fig. 2.5 A function.

In this description, we are given a domain (the numbers such that —2 < x < 2- recall, square brackets indicate
inclusive interval notation), and a range for the function (the values f(x) for the defined domain). A graph
of this function is plotted in Fig. 2.5. Although this is how we typically think of a function, we can define it
more generally.

Definition 2.15. A function (or sometimes mapping) is a relationship between two sets, A and B, such that
each element of A is uniquely associated with an element of B.

The word uniquely appearing in our definition here is really important: a function is always single-valued.

This definition requires a bit of additional explanation for our purposes. First of all, for us, the sets
involved for a function are almost always intervals of the real number line. We even give these functions
additional names and descriptions, as follows. We usually refer to functions as having independent and
dependent variables. The independent variables are the inputs to the function (or more properly, the set that
is input to the function; this is the set A in the definition). Conversely, the dependent variables are the set
of values that are produced by the set of independent variables upon application of the function (this is the
set B in the definition). Each member of the set of independent variables is mapped to exactly one member
of the set of independent variables (this is the uniquely part of the definition). Fig. 2.6 gives a pictorial
representation of the process.

The concept of functions that strictly increase or decrease is one that is used routinely in mathematics; so
much so that they have a special name: monotonic. These functions are defined as follows.

Definition 2.16. A function f(x) is said to be monotonically increasing on and interval, /, if the following
are true:

L. f(x1) < f(xp) forall x; < xp in 1.

Fig. 2.6 An function, in
conceptual form. A function
can also be considered a type Operator

of operator. X N f > f(X)




2.2 Functions 39

2. f(x) is not the constant function (f(x) = C, C a constant).
Similarly, a function f(x) is said to be monotonically decreasing if the following are true:
1. f(x1) > f(x) forall x; < xp in 1.

2. f(x) is not the constant function.

Obviously, functions in general are neither monotonically increasing nor decreasing, but a combination
of these two concepts over subdomains of their total domain. The constant function is neither monotonically
increasing nor monotonically decreasing on any subdomain of its domain.

There is one final class of functions that requires definition because the term arises so frequently in applied
mathematics. These are the algebraically homogeneous, or simply homogeneous, functions. Note that later
on, the concept of homogeneous differential equations will be discussed; while the concepts are related, one
should not confuse the two. Here, we define algebraically homogeneous functions as follows:

Definition 2.17 ((Algebraically) homogeneous function). An algebraically homogeneous function is one
with multiplicative scaling behaviour: if all its arguments are multiplied by some factor, ¢, then the effect
on the function is that its value is multiplied by some power of the factor . In other words, homogeneous
functions display the following behavior

flax) = o f(x)

Here, n is a real number, and it called the degree of the function.

Example 2.2 (Homogenous functions.). Below are a few examples of homogeneous functions.

1. All polynomials of the form f(x) = x" are homogeneous. To see this, just note the following:
f(ox) = (ax)® = ax?. In this case, the degree of the function is equal to the degree of the
polynomial.

2. No functions with additive constants are homogeneous. This is also easy to demonstrate. Suppose
flax) = o' f(x) is a homogeneous function. Now consider the function g(x) = f(x) + ¢. The
function g(x) cannot be homogeneous, because a multiplicative scalar & will not scale the constant
c. Functions like g(x) (i.e., ones that contain an additive constant) are called affine. This just means
that the two functions are connected by a linear scaling of the coordinate (the independent variable)
followed by a translation (the additive scalar).

3. The function f(x) = 1/x? is homogeneous. To see this, note

1
(ox)?
11
T a?s?

=a 2%

flox) =

So, this function is homogeneous, with degree equal to —2.
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2.2.1 Boundedness

In science and engineering, we usually think of the sets involved as being intervals of the real number line.
To put this in context, think of our example given by Eq. (2.19) above. Here, we can define of the input set A
in set builder notation as A = {x : x € [—2,2]} (as arefresher, this is read as follows: “The set A is constructed
by collecting the all of the numbers x such that x is between -2 and 2, inclusive of the endpoints™). The set B
we can think of as all of the numbers defined by the function f. Recall, we have f(x) = x> +2. The output
set, B, is defined by B = {f : f(x) = x>+ 2 forall x € A}. Note also that these intervals are either closed
or open intervals. The concepts of closed and open intervals (or, generally, sets) is actually much deeper
and complex than one would assume (as described in §2.1.3. Now, we combine the ideas of intervals of
independent variables, and functions on those intervals. The following is an example.

Example 2.3 (Domains of a Function as an Interval). The function

70 =2 e (2.20)

has the domain D = (0, ]. The function is monotonically decreasing on this domain. While the func-
tion may not seem particularly unusual, it actually does have some strange behavior at x = 0. A plot
of the function is given in the figure below.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 2.7: The function f(x) = (sinx)/x.

This function is perfectly well-defined all all points between 0 and 7 (that is, D = (0, z]), but it is
undefined at x = 0. One difficult concept arises in this kind of description, and this is encountered
when you ask the following question: What is the minimum value of the set forming the domain?
Technically, the domain of this function has no minimum value! The number O is not in the domain
(hence, the “(”” in the domain description). However, for any small number €, say £ = 1 x 10100000000,
the value of the function (sinx)/x is very near 1. It is only undefined at exactly x = 0. In cases like this,
where we can’t technically use maximum or minimum, we say instead that the number 0 is the greatest
lower bound or infimum of the domain. Here, one needs to interpret “greatest” as follows: of all of the
lower bounds for for the interval where f(x) is defined, x = 0 is the largest of them. Any larger value
would be within the domain, and is thus not a bound.
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The example above suggests that identifying the smallest number in an open set is not generally possible.
However, one can often identify the largest number that forms a lower bound for the set (in the example
above, this is the number 0). This leads to the following theorem (which we will not prove!), which we will
use primarily as a definition.

Theorem 2.1 (Least Upper Bound, Greatest Lower Bound). If an interval has any lower bound, then it
also has a greatest lower bound (g.Lb., or infimum). That is to say, there is a unique number, z_, which is
a lower bound for the interval such no larger numbers are lower bounds. Any numbers larger than z_ are
either (i) in the interval, or (ii) greater than or equal to an upper bound of the interval.

A similar statement can be made about the upper bound. If an interval has any upper bound, then it also
has a lease upper bound (Lu.b, or supremum). The least upper bound is a unique number, 7, which is an
upper bound for the interval such no smaller numbers are upper bounds.

To help make this more concrete, consider the interval we examined above: (0,1]. For this interval, the
greatest lower bound is the number 0, even though the number 0 is not in the interval itself. The least upper
bound is the number 1. No numbers, zp, smaller than 1 are, obviously, upper bounds for the interval, because
zo < 1 and 1 is in the interval by definition.

Many of the functions that we encounter in applications are mappings that never tend toward infinite val-
ues. In part, this is because physical systems never really have phenomena with infinite magnitude. However,
in many instances it can be useful model a phenomenon as if it tended towards infinite value. Additionally,
some purely mathematical concepts require the definition of functions that tend toward infinity (e.g., the
tangent function, tan(x) = sin(x)/cos(x), necessarily tends toward infinity as cos(x) tends toward zero). It is
useful to establish the concept of functions being bounded (and, hence, also being unbounded) as a matter
of the vocabulary used in mathematics.

Definition 2.18. A function, f, is bounded on some interval I = [a, b] if there is some number, M such that
[f(x)] <Mforallxel.

Any function that is not bounded is unbounded. An example of a bounded and unbounded function appears
in Fig. 2.8. In this figure, part (a) contains a bounded function. The gray dashed line in the figure represents
the absolute value of the function. The horizontal line at x = 10 indicates the minimum value of M that
bounds the function. All values of the absolute value of the function are less than or equal to M, thus the
function is bounded. Note, in general there is no need to establish the minimum value of M, as done here, to
establish the boundedness of the function. Had the choice been M = 12, it would still be possible to show
that all valued of the function are less than M = 12, and the function is therefore bounded. In Fig. 2.8(b), an
the function f(x) = 1/(1 —x), 0 < x < 1 function is plotted. This function is unbounded on this interval as
x — 1. For every choice of M, we can always find a value of x sufficiently close to 1 such that the value of
f(x) is larger than M. Thus, even though the interval of definition does not contain the value of 1 (in which
case one would find an infinity defined by 1/0; this is sometimes called a singularity), the function is still
unbounded! Note that while we often think of an unbounded function like f(x) = 1/(1 — x) having a value
of infinity at the singularity, it is more proper to think of the function as being undefined at the point x = 1.
The reason for this is the following: up to the point x = 1, we can imagine a limiting behavior that is well
defined. In other words, it is correct to say
1

lim = oo (2.21)
—11—x

because it indicates the limit of numbers that take the form 1/(1 — x), where x is any real number less
than 1. The ratio 1/(1 — x) is always defined, because x is never equal to 1 in the interval defined. This
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(@

f(x) = 10 sin(mrx)
f(x) [f(x)| = 10 |sin(mrx)|

0.2 0.4 0.6 0.8 .0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2.8: (a) The function, f(x) = sin(47x), which is bounded on all possible intervals of the real line. (b) The function,
f(x) =1/(1 —x), which is unbounded on the interval x € [0,1) as x — 1.

is in contrast to setting x = 1; in this case, the function evaluates to f(x = 1) = 1/0. The form 1/0 is not
“infinity” as it is sometimes (incorrectly) represented. Technically, the expression 1/0 has no definition at
all; it is an undefined operation. While this last discussion is perhaps a bit overly-technical, there are a
number of examples in applied mathematics where this seemingly technical point is enormously important
in generating the proper understanding of a problem.

2.2.2 Continuity

Functions are not necessarily always continuous. For example, consider the following function. Assuming
€ [—2,2], define the function

flx) = { > x=1 (2.22)

x% 42, otherwise

This function is plotted in Fig. 2.9. Although it is true that this function requires some extra handling (for
the point x = 1), the end result is not too dissimilar to what we are used to seeing. However, it does indicate

Fig. 2.9 A function. This

function has a single point of f(x)
discontinuity. 6l
5F .
4l
3 /
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that it might be useful to further characterize functions on the basis of how continuous and smooth they are.
A few comments about the various labels that are applied to functions to describe how smooth they are are
provided in the following.

A function f(x) is continuous if it changes gradually as the independent variable x changes. For a one-
dimensional function, one can think of this as being able to draw the function with pen and paper without
taking one’s pen off the paper. More formally, using the dreaded §-¢ arguments, one make a more concrete
statement. Unlike most §-€ arguments, we are going to do this in slow steps. First, suppose we are interested
in the continuity of a function at a point x = a. Now, we look at all of the points within a small distance, +0,
around a. We can denote those points by all of the values for x such that a — 6 < x < a+ 0, or, equivalently
|x—a| < 8. Now, for all of such points that we find on the x—axis (the domain), we can compute the absolute
value | f(x) — f(a)|. Suppose we do this, and we find that there is a number € > 0 such that

| f(x) — f(a)| < € for all x such that [x —a| < & (2.23)

Now, for a continuous function, we expect that as we squeeze the interval a — 0 < x < a+ & by making §
smaller, we should also be able to correspondingly find a new value for € that meets the criterion given in
(2.23). In other words, as |x — a| gets smaller, so does | f(x) — f(a)|. This is essentially the way that continuity
of a function is defined. Formally, the argument is turned inside-out (which is common in the presentation
of definitions and proofs in mathematics...), to read as follows

Definition 2.19. A function, f, is continuous at a point x = a if and only if (i) a is in an open interval of
the domain of f, and (ii) we can always pick an € (as small as we like), and still always find some interval
around a (that is, a — 6 < x < a+ 8) such that |f(x) — f(a)| < &, regardless of how small we have chosen €
to be.

Definition 2.20 (Continuous Functions). A function is continuous on and interval, I, if it is continuous for
each open sub-interval of I.

In essence, the “for each open sub-interval” part of the definition is to avoid any possible problems with
defining continuity at the least upper or greatest lower bound of the interval. In short, we don’t need to worry
about continuity at the end points of our domain. This is designed specifically to avoid potential ambiguities
as were discussed for the function f(x) =1/(x—1), 0 <x < 1in Section 2.2.1.

These definitions can be a bit tricky to apply, and they are not the only way to define continuity. Alterna-
tively, one can insist that the following limits, taken from the left and right sides of a must be valid for each
point in a domain for a function to be considered continuous.

lim | £(x) — f(a)| = 0 (2.24)
lim |/() — f(a)] = 0 (2.25)

And sometimes this alternative is easier to use in applications. Note. The long double arrow ( =) in math-
ematics should be interpreted as meaning “this implies”. Regardless of which method is used, the results are
the same. This is easiest to see with a simple example, as illustrated in Fig. 2.10.
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Example 2.4 (Continuity of Functions).

In Fig. 2.10, it is apparent from inspection that the function g(x) = %xz (the orange line on the
Fig. 2.10) is continuous. Suppose we consider the point x = 1. Clearly, we can pick a small number,
say € = 1/1000, such that there is a small enough interval around x =1 (1 — 8 < x < 1+ &) where
|f(x) = £(1)] < 1/1000. In fact, we can compute what this interval is as follows

|f(1+6)—f(1)] <1/1000

Accounting for the absolute value, there are two options

T1+8)*—1 <1/1000 or I—1(1-8)* < 1/1000

Solving these inequalities for &, we find

1002 998

The first of these is the smallest, so it is safe to take 6 equal to that value.

You can check this directly by noting that

1002 1
|f<” 10001> ~/ 1= 1000

1002 1
|f<1—,/1000—1> —f(1)| =0.000999 < -

No matter how small we make €, we can always find a value of § so that the inequality is valid.

Now consider the function f (the blue line on Fig. 2.10). Here, our scheme works reasonably well
until we set € to be less than about 1/2. Because there is a jump of 1/2 right at x = 1, we can easily
find an € that breaks our definition. For example, set € = 1/10. Now we are looking for the values of x
in an interval a — 8 < x < a+ 0, such that | f(x) — f(a)| < 1/10. Of course, we can see just by looking
at the graph that there is no such interval. In any small interval around x = a, the value of | f(x) — f(a)|
is at least %, but definitely never smaller than that value.

The definition of continuous, then, aligns with our intuitive notion, even if the definition itself takes
a bit of thinking to fully understand.

Functions that have a jump in them, such as the one in Fig. 2.10 are called discontinuous. When there are
a finite number of discontinuities, sometimes the functions are called piecewise continuous. In other words,
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Fig. 2.10 Two functions, f

and g. The function g has 20
a discontinuous jump in the 15 L }
value of 1 atx=1. g(x)
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Fig. 2.11 A continuous func-
tion with discontinuous f(x)
derivatives at a two points.
This kind of function is some-
times denoted C° to indicate
that it is continuous, but it
does not derivatives at all
points in the domain.

a piecewise continuous function is a function that has a finite number of jumps in it and doesn’t blow up to
4o anywhere. This is an important enough concept that it deserves a specific definition.

Definition 2.21 (Piecewise Continuous Function). A piecewise continuous function is a function that is at
continuous everywhere, except at a finite number of points.

Within continuous functions, the functions are sometimes by their derivatives. As an example, examine
Fig. 2.11. This function is defined by

2x+2 0<x<2
f)=<4(x—1) 2<x<3 (2.26)
10(x—2) 3<x<4

In general, the word smooth is used to indicate a function that has a derivative at each point in its domain.
Thus, the function given by Eq. (2.19) is smooth; the function given by Eq. (2.22) is technically non-smooth,
but this arises because of the discontinuity imposed by a single point. Extending the idea of piecewise
functions, we can call the function given by Eq. (2.29) piecewise smooth. Most of the functions that we
study in this text will be of this kind.

Definition 2.22 (Piecewise Smooth Function). A piecewise smooth function is a function where the first
derivative of the function is well-defined (i.e., it exists, and it is not infinite) everywhere, except at a finite
number of points.
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Fig. 2.12 A highly con-
tinuous function, f(x) =
1//mexp(—x?). This func-
tion has derivatives of all
order; thus it is called a C*
function. It also happens to
be an analytic function (note,
however, that there exist C*
functions that are not ana-
lytic!).

We can further characterize smoothness by how many derivatives a function has. If a function has an infi-
nite number of derivatives that exist, then it is called C*. An example here is the function f(x) = exp(—x?).
This function is smooth (it is plotted in Fig. 2.12), and is often called a Gaussian function. We can define
particular C* functions that are called analytic functions; however this will have to wait until after the review
of derivatives and integration is presented.

Some functions have only a limited number of derivatives that exist. As an example here, consider the
function

5 0<x<l1

= 2.27
2 42x—1 1<x<2 227

This function looks innocuous enough- it is plotted as the orange curve in Fig.2.13. However, its derivative
(plotted in blue) has a cusp in it at the location x = 1. Therefore, although its first derivative exists and
is continuous, its second derivative is not defined at x = 1. To reflect this, functions with one continuous
derivative are called C'. Although we have not yet reviewed derivatives, we note the following generalization
of this idea.

Definition 2.23 (n""-order continuous function). Suppose a function f is such that the first n derivatives
Ge. f, f", f" ... f)are both bounded and exist (i.e., there are no points such that the derivative of order
(n— 1) generates a cusp or other discontinuity). Then the function is continuous in the derivative up to order
n, or, more simiply, C".

There is a special class of functions called analytic that have a number of interesting properties. Many of
the familiar functions that we know about are analytic. Examples include
1. All polynomials of finite degree.
2. The exponential and logarithmic functions.
3. The trigonometric functions.

In the early days of mathematical evolution (say, through the early 1900s), analytic functions were synony-
mous with functions. Since that time, the notion of what constitutes a function has grown considerably; some
of the unusual examples of functions that are not analytic in some part of their domain (or everywhere, in
the case of the Thomae function given in Fig. 2.15) are presented in the material later in the text.
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Fig. 2.13 A continuous func-
tion (orange) with continuous
first derivatives (blue). How- 1.0¢
ever, the second derivatives
are not continuous at x = 1.
This function is called a C'
function to indicate that it has
continuous first derivatives 0.4}
everywhere in the domain.
0.2¢
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0.5 1.0 1.5 2.0

Definition 2.24 (Analytic Function— Definition 1). Suppose a function f is defined on a domain, D. The
function f is analytic function everywhere in D if for every closed interval K that is a subset of D (K C D)

there exists a constant C such that for every point x € K and every non-negative integer, k, the following
bound holds

da'f
dxk

(x)' < CM k) (2.28)

While this definition does make a mathematical mouthful, it is relatively easy to understand intuitively.
What the definition is trying to tell us is that, for any closed finite interval that is part of the domain of the
function, that the function, nor any of its derivatives, go to infinity in that domain. There are some technical
issues regarding the domain of the function (and the closed subsets that are selected from it) that will not be
covered here. In general, however, we can think of a function as being analytic at a point in its domain if its
value and the value of all of its derivatives do not tend toward infinity.

As a final note about the classification of functions, there is one additional classification that is useful
to know about. There are, in one sense, two different kinds of functions that we use in common practice.
There are polynomial functions, and the roots of polynomial functions to start with. A polynomial function
is a polynomial (of any finite order) whose coefficients are also polynomials. For example, a polynomial
function of order 4 is defined by

as(x)x* 4+ a3 (x)x> + a (x)x* 4+ a1 (X)x + ap(x) = 0

For such a function, the roots generate new functions, f(x), involving (rational) fractional powers (including
negative powers). Such functions are called algebraic because they can be defined using only the rules of
algebra applied in a finite algorithm. The following are all examples of algebraic functions.
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V1+x?
37— Vx1/3

The nice thing about these functions is that they can be entirely described mathematically simply by describ-
ing the polynomial that generates them. Algebraic functions are expressions involving only a finite number
of terms, and using only the algebraic operations addition, subtraction, multiplication, division, and raising
to a rational fractional power. In a sense, we fully “understand” these functions as long as we understand
the operations that define them. This is literally constructive- for many examples of algebraic functions, we
can give someone an algorithm (with a finite number of terms) that explains what the function is and how to
compute its values. Importantly, all algebraic functions are given by the roots of some polynomial; however,
for rational polynomials of degree 5 or higher, it is not true that all such polynomials have roots that are
algebraic functions (the proof of this is known as the AbelRuffini theorem).

It turns out, however, that there are many interesting and useful functions that are not the roots of any
polynomial equation. Familiar examples include the sinx, cosx, Inx, and e* functions. Such functions are
called (and, yes, this is really the name) transcendental functions. The idea behind the name is that these
functions transcend description by the discipline that we normally call algebra. Transcendental functions
will show up later in our studies of differential equations, and some will prove to be essential for describing
solutions to such equations. All transcendental functions are analytic (a term we will define in by the Taylor
series in detail later), so they all have convergent Taylor series representations.

There are functions that are even more . . . inferesting to attempt to defined because their structure begins to
challenge the concept of function altogether. Consider the following function (sometimes called the modified
Dirichlet function or the Thomae function)

x=0
x€Q,x=p/q (2.29)
xeP

fx) =

Oxi— O

It is understood here that x = p/q is expressed in fully reduced fraction form. This is a really unusual
function, and clearly it has no simple, closed algebraic formula. A plot of this function appears as Fig. 2.10.
In addition to its strange definition and look, it also has some other unusual characteristics. It turns out that
the real numbers are “denser” than the rational numbers. In a sense, there are more (many, many more)
irrational numbers than rational ones. Thus, this function is continuous (and has a derivative) at each point
where x is an irrational number. It is discontinuous at every point where x is rational. It is not terribly
important to understand from this example all of the details of why this kind of behavior exists (although
our discussion of intervals above is suggestive), but the essential idea is to build an intuition that the real
(irrational) numbers constitute a much larger (denser) set than the rational numbers do.

2.2.3 Equivalence Classes of Functions

Later on, when we discuss the concept of Fourier series, it will be helpful to understand the notion of
equivalence classes of functions. In short, two functions f and g are considered to belong to the same



2.2 Functions 49

Fig. 2.14: Two functions that belong to the same equivalence class. The second differs from the first at only a single point.

equivalence class if they differ from each other by, at most, a finitely countable number of points. An example
of two functions that are of the same equivalence class is given in Fig. 2.14. The mathematical representation
of these two functions is given by

fx)=x

[ x* forx#1
g(x){ 5 forx=1

Note that we have the following limits for g (the function on the right-hand side) near x = 1

lim,_ 1+ g(x) =1

lim,_,,- g(x) =1

where 17 indicates the limit coming from the right-hand side, and 1~ represents the limit coming from the
left-hand side. Be sure to recall here that the limit exists in the sense of approaching the value x = 1, but not
actually reaching that value. If you need a refresher on one-sided limits, your undergraduate calculus text
will definitely cover this material.

It turns out that, from the perspective of integration (including Riemann integration— see §2.4.3), the
presence of a single discontinuous point does not affect the result of the integration. Speaking colloquially, a
single point has no measure, so it does not add or subtract from the integral. The following definitions makes
this more formal.

Definition 2.25 (Removable discontinuity). A function is said to have a set of removable discontinuities
if (a) the number of discontinuous points is finite, and (b) the left and right-hand limits at each point of
discontinuity are equal. The value of the function at the discontinuous points can be taken to be the value of
the limit at that point.

Definition 2.26 (Equivalence class of functions). Two functions f and g are said to belong to the same
equivalence class if (a) the two functions f and g have only removable discontinuities, and (b) f — g=0 for
all points that are not located at a discontinuity in either f or in g. Alternatively, (b) could be stated by
“f — g = 0 after all discontinuities are removed”.
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Fig. 2.15 A graph illustrating
a collection of a values for
the Thomae function using
2<p<50,2<gq<50.
This may look super weird,
but it meets the criteria for a
function.
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2 Mathematical Definitions, Concepts, and Review

2.3 Linear Spaces, Linear Operators, and Linear Algebra

We will have only a few occasions to use linear algebra in this material, but it is worth briefly reviewing, and
it also allows us to discuss the concept of an linear operator. Many of the problems that we encounter in the
material to come involve linear operators, so spending some time understanding what they are is worthwhile.

Operators are just what they sounds like: They are mathematical constructs that operate on something
(say, a function) to generate something else (for example, a different function) (Fig. 2.6). This is a very

general concept, and it is difficult to give it a precise meaning.

To make this concrete, take a look at the following example.

Example 2.5 (Functions as operators.).

As an example, all functions are operators.

We are all familiar with the idea of a function. In the notation that we have are probably most
familiar with, a function is defined as a one-to-one (i.e., unique) mapping between two sets. In a more
familiar setting, we think of a function as having a range (which is usually an interval on the real line,
plotted on the horizontal axis by convention) and a domain (which is usually some portion of the real

line, plotted on the vertical axis by convention). For example,

any of the following:

fx) = 5x,
g(x) = sin[2sin(2sin{2sin(x) })]
h(x) = sin[1/x]

These functions are plotted in Fig. 2.16.

f(x)
50

a properly defined function would be

0<x<10 (2.30)
oo < x < o0 2.31)
—-0.1<x<0.1 (2.32)
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Fig. 2.16: Figure for Example 1.2. Three functions.

What is important to realize about these functions is that they are operations on their independent
variables. In some sense, a function exists separately from their independent variables. Thus, once
I have defined, f(x), as, for example, in Eq. (2.30), then what I have really done is to define an
operation to be performed on one set (the independent variables) to generate another set (the functional
value). Often when we think of functions as being operators, we consider (1) the function to define
the operation, and (2) the operation is done on whatever is put into the function. The thing put into
the function, when used in this sense, is often called the argument. The argument can be a simple
independent variable defined over an interval (our conventional use of functions) or some other set.

For example, suppose we define the following set: X = {x: x = 1,3,4,5,42}. We would read this
in words as "The set X is the set that contains values of x such that x is equal any of the values 1, 3, 4,
5, and 42”. The set X has a finite number of values in it, but we can still use any of the functions above
as operations on this set. Let’s interpret f(X) the following way:

FX) ={f(1),5(3),f(4),£(5), f(42)}

or, computing the values using the expression f(x) = 5x

f(X) = {5, 15, 20, 25, 210}

We can even think about putting functions in other functions (creating a as arguments when we use
the operator idea. As an example, consider the function p(z) = 22+ 1. Now, can we make sense of the
operations f(p) and h(p)? Sure, we need only apply the operations to the argument of the function,
regardless of what the argument is.

f(p)=5p(z) h(p) = sin(1/p(z))
:5(zz+1) = sin (zzlﬁ)
=522+5

When we interpret a function f(x) this way, we sometimes write the function without the independent
variable (with the idea that the independent variable can be anything), as in simply f. This is just a
notational device used to be more compact, there is usually no deeper meaning associated with it.

2.3.1 Linear Operators

Now that we understand the basic idea of an operator, we can consider what a linear operator is. This is
actually pretty simple at this point.

Definition 2.27 (Linear Operator). A linear operator, .Z, is an operator that subscribes to the properties
of additivity and homogeneity. Specifically, this means
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additivity :. L (f+g8) = Z(f) +Z(g) (2.33)
homogeneity :.Z (o f) = 0. L(f) (2.34)

Linear operators are a subset of all possible operators. In fact, most interesting phenomena in engineering
and physics are nonlinear in general. Linearity exists only as an approximation to the more general nonlinear
behavior. In this text, we will be generally concerned with (although not exclusively!) linear operations and
linear operators.

As discussed above, functions can themselves be though of as operators. Thus, a linear function would
subscribe to the properties of additivity and homogeneity above. As and example, the following function is
linear

f(x)=5x (2.35)

To show that it is linear, note that we can prove both additivity and homogeneity in one step. If we make
the substitution x — ay + Bz, then we find

floy+Bz) = 5(ay+Bz)
=aS5y+f
=af(y)+Bf(z) (. linear) (2.36)

illustrating that the function is indeed linear.

There is a particular feature of linearity that can create some confusion. We are used to calling functions
such as y = mx + b linear. However, it is not difficult to show that this function does not meet the prop-
erties of additivity and homogeneity (try it!). There is a subtle reason for this failure. In a very real sense,
y = mx+ b is actually the translation of a more fundamental function y = mx. Take a look at Fig. 2.17. Each
of the functions illustrated is a translation of the function y = %x. Such translations are called affine trans-
formations. It turns out that when we call a function linear, we actually mean that the fundamental function
itself (where b = 0) is linear. The constant term only represents an affine transformation of this more funda-
mental function. In fact, in each of the lines defined in Fig. 2.17, we could eliminate the constant term b by
simply making a transformation of the coordinate system. For example, if we moved the coordinate system
vertically by a distance of 2, then the blue line in the figure would then have b = 0. Thus, in a sense, all
affine transformations of a function are the same as far as linearity is concerned. In order to assess linearity,
the first step would be to first make an affine transformation of the coordinate system so that b = 0. In a
more practical sense, we can essentially ignore constants when checking operators (including functions) for
linearity.

Example 2.6 (A familiar example: The derivative as an operation.). The process of differentiation is
one example of a familiar operation. Consider, for example, the following.

d
T dx

Z(f(x)) (f()

In this example, the operator is defined by derivative notation, ix. When we say £ = %, we are just
defining the fact that the “abstract” operator in this case is the derivative operation, denoted by %.
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Fig. 2.17 Translations of the f(x)

function y = %x. 6 /
— b=0
— b=2

/
/ — b=4

Example 2.7 (The derivative as a linear operator.). Is the derivative operator a linear one? We can
check. Recall the definition.

Z(of(x)+Be(x)) = aZ(f(x)) +BL(g(x)) (2.37)

Since our operator in this case is just %C, we need only to check that the linearity identity is met. In
other words, we need to evaluate

Z(af(x)+Bgx)) = %(af( )+l3g( )

L (@) + - (Bax)

d d

= o—(f(x) +B - (s(x))

This is exactly the form that a linear operation must take as defined by Eq. (2.37), so the derivative is
a linear operator.

A compound linear operator is just the sum or one or more linear operators. The easiest way to understand
these is through some simple examples. Although we will not use operator notation extensively in this text,
it is a useful notation to understand.

Example 2.8 (Compound linear operators). Compound linear operators act as follows.

(A +4)(f(x)=Af(x) +LA(f(x)) (2.38)

It is important to recognize that, although the notation looks as though it indicates multiplication, it
does not! Here is a more complex looking example that helps to understand the idea better.
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d d\ o, d 5. d »
(5+5) =26+ 502
:ny+x2

Note that the operators do not act like multiplication!

d d 2 3_ 4.2 3, 4,9 3
<dx+dy)(x y+y )—dx(x y+y )+dy(x y+y7)

=2xy+ 2+ 3y2
Functions can be treated as operators also; but only homogeneous functions are linear operators.

Example 2.9 (Functions as operators.). Consider the functions defined in the previous example.

f(x) = 5x, 0<x<10 (2.39)
g(x) = sin[2sin(2sin{2sin(x)})] 0o < x < oo (2.40)
h(x) = sin[1/x] —0.1<x<0.1 (2.41)

Are they linear operators? To check this, we need only try the operations on the quantity ay+ Bz to
see if the conditions given by Eqgs. (2.33)-(2.34) are met. For the generic operator L, we will substitute
our particular functional operators. Thus, for the example of f, we have the result

flay+Bz) =5(ay+Bz)
= a5y +B5z
=af(y)+Bf(2)

Which indicates that f is linear. For the function g, we find

g(ay+ Bz) = sin[2sin(2sin{2sin(ay + fz)})]
# og(y) + Bg(z)

so g is not a linear operator (and also not a linear function!). The final function # is left to the reader
to check.

There are two more concepts that are useful to introduce when discussing the (somewhat abstract) concept
of linear operators. These are the identity operator and the inverse operator.

Definition 2.28 (Identity operator). The identity operator, .#, is any operator such that .# (f) = f for all
admissible objects in the domain of .# (e.g., numbers, functions, vectors, etc.) f.
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Example 2.10 (Identity operators.). Here are three common examples of identity operators that you
have seen before.

1. The number “1” is the identity operator in arithmetic. For any number a, we have 1 -a = a.

2. We can define an identity function g(f) in a domain D = {0 < x < 1} as follows: g(f(x)) = f(x)
for all x in D. It is not too difficult to recognize that this operator is equivalent to multiplying a
function by the number 1.

3. consider the following matrix multiplication (Note: linear algebra is covered in the next section).

= 10]
~|01]

Now, for every possible vector a of dimension two, we have

a=[39] o] =[]

Therefore, | is an identity operator for the domain of vectors of dimension two.

We won’t be using the theorem-proof format very often in this material, but occasionally it is helpful,
especially when the proofs are short and clever. The definition of the inverse operator can be done this way.

Theorem 2.2 (Inverse operator). A linear operator can have an inverse, £, only if £(x) = 0 implies
that x = 0.

Proof. TIf £ (x) =y then the inverse of .% is the mapping which takes y back to x. (AN ASIDE: Here, it
might be helpful to think of a conventional function, such that £ (x) = y(x), and x is the domain of the
horizontal axis. For example, .Z (x) = x> for 0 < x < 1 associates each independent value in the domain x
with a unique value for the result (which we call y(x)) in the range.)

Suppose now that .Z(x1) = yo and .Z(x2) = yo. Then by linearity .Z (x; —x2) = 0. One of the following
results must be true, either (a) x; —x, = 0 (i.e., x; and x; are the same value), or (b) x; —x # 0, so that
two values of x in the domain of .Z(x) that would be mapped to the same value yg in the range. For the
inverse function, the roles of the domain and range are interchanged. Thus, for the inverse function, y forms
the domain, and .#~!(y) = x is the range. However, by definition, a function can have only one value in the
range associated with a value in the domain. Thus, the option where x; and x; are not equal is not possible
(or the inverse would not be a function). Thus we must have that x; = x», and this means £ (x) = 0 is only
true for x = 0. ]

Without getting overly-technical, for our purposes an inverse linear operator .2~ ! will exist when we can
show

LN D=2 H=rs (2.42)

and that .Z~! is never multiple-valued.
As usual, examples can really help make these ideas more clear.
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Example 2.11 (Inverse operators.).

1. Suppose we have f(x) = x? for {x: 0 < x < 1}. Does this function have an inverse?
Try these functions

y=f(x) =x* (2.43)
x=gy) =y (2.44)

Now, note that f(g(y)) = f(,/¥) = y. But, from Eq. (2.43), we have y = x?; thus, we have
f(g(y)) = x*. Now, note that the identity operator is such that . (f(x)) = .#(x*) = x%. So, by
definition, we must have that f(g(x)) = x> = .# (f(x)). Therefore, f(g(x)) is the identity operator,
and, by definition, g is the inverse of f.

Functions that are inverses of one another have an interesting graphical feature. Consider the
two functions above; if we plot them both as functions of x (i.e., we plot the functions y = x?
and y = \/x, we obtain the plot below. Functions that are inverses of one another have reflective
symmetry about the line y = x.

200 y=x

0.5~ ==

Fig. 2.18: Inverse functions.

There is one caveat that needs to be attended to when discussing the idea of linear operators and linear
equations. The idea of linearity is usually associated with only the operator part of the equation. In particular,
what this means is that constants involved in a function are excluded. This is by convention, not necessity.
Consider the following linear equation.

flx)=3x+12 (2.45)
Obviously the operator f must be linear, because f(x) is a line! However, if we attempt our normal process

for checking linearity, we encounter a problem

flay+Bz) =3(ay+Bz)+12 = aly+B3z+12 (2.46)
#af(y)+Bf(2) (2.47)
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So, what went wrong? Well, the answer here is a bit tricky. We should, technically, think of constants as not
being part of the operator. In other words, suppose we define L(x) = 3x. Then, the equation above can be
written

Ffx)=Z(x)+12 (2.48)

And the actual question can be posed as “is the operator . linear”? And the answer to that question is
obviously yes. The important thing to remember here is that the linearity of the equation has only to do with
the operators involved, not with any particular constants that may be tacked on to the operators. Thus, a
linear equation is any equation whose operator (which, by definition does not include additive constants) is
linear.

2.3.2 Linear Algebra

Now that we know what a linear operator is, we can discuss linear algebra. Most people’s experience with
linear algebra leaves them without an intuitive notion of what is really going on. Because linear algebra is
such a mathematically rich topic— it is the first place where more formal mathematical analysis can sensibly
be done in terms of vector spaces — it tends to favor mathematical detail over process. At any rate, for the
material covered here, a simple review of linear algebra is sufficient. To start, we will consider a set of linear
functions; for the purposes of generating a concrete example, consider the following

fi(x,y,z) =3x+2y+z—-5=0 (2.49)
Ly,z)=x+y—z-1=0 (2.50)
f3(x,y,2) =2x+2y+3z—10=0 (2.51)

Obviously this is a set of equations, and obviously they are linear. Do these equations have a solution? Well,
we know that there must be if the three equations are independent. That is to say, no equation is a linear
combination of the other two; or, there are no coefficients a,b # 0 such that f; = af, + bf3. Note that this
one condition is sufficient (why?). Assuming that the equations are linearly independent, and that there are
as many equations as there are variables, then there is a solution to the set of equations (this is known from
the fundamental theorem of linear algebra- which we will not prove!)

One of the reasons for matrix algebra in the first place is that writing all of these equations down is
somewhat repetitive. Thus, we can compact the notation by defining matrix multiplication. To start, note that
the set of equations above can be written out more compactly (eliminating the function labels, which are
unnecessary)

3x+2y+z=5 (2.52)
x+y—z=1 (2.53)
2x+2y+3z=10 (2.54)

Now, suppose we define four vectors, as follows
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ry = (3,2, 1)
r,=(1,1,—-1)
r; =(2,2,3)
x = (x,5,2)

Recall that the dot product between two vectors is given by a-x = (aj,a2,a3) - (x,y,2) = a1x + axy + asz.
Noting this, we can write our equation more compactly as

I‘1~X:5
l‘2-X=1
ri-x=10

Or, noting X = (x,y,z), using conventional notation for vectors

ry X 5
r y|l =11 (2.55)
r3 Z 10
This essentially defines matrix multiplication by the notation
32 1 X
11-1]|y|l=]1 (2.56)
22 3| |z 10

where to complete the multiplication, each row (taken as a vector) is dotted with the vector x = (x,y,z). This
is the easiest way to remember how to do matrix multiplication!

To solve this problem, there are a number of ways that we can proceed. The easiest one is just to do what
we would have done if we still had everything written out as three equations in three unknowns: eliminate
variables from the equations simultaneously. In short, we can do any of the following operations:

1. Multiply any row by a constant.
2. Add any two rows, and replace either of those two by the result.
3. Interchange any two rows.

There is a caveat here— whatever we do to the rows of the matrix, we need to also do to the vector on the
right-hand side (they are equations after all!) The simplest way to see this is to just do an example. It is
possible to do this in a super-orderly, algorithmic fashion, but with small matrices, it is often better to look
for easy opportunities for simplifications. To start, multiply row 2 by —2, and add that to row 3, the divide
row 3 by 5. This gives

32 17 [x 5
L1-1||yl=]1 (2.57)
00 1]z 8/5

Now, multiply row three by —1 and add to row 1; then add row 3 to row 2. Now we have
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320 |x 17/5
110 |y|=1|13/5 (2.58)
001 b4 8/5
Clearly, we are close. Multipy row 2 by —2 and add to row 1.
[1 007 [x] [—9/5]
110] |y|=]13/5 (2.59)
1001 [z] | 8/5 |
As the last step, multiply row 1 by —1, and add it to row 2
[1 007 [x] [—9/5]
010 |y|=1]22/5 (2.60)
1001] |z | 8/5 ]

The matrix on the left-hand side of this expression is called the identity matrix, denoted I. It is the matrix
version of “1”. Carrying out the matrix multiplication on the left-hand side leads to the solution

x -9/5
y|=122/5 (2.61)
b4 8/5

As a final note regarding linear algebra, there are a few more words to say about determining whether
or not a set of equations is solvable or not. Above, we mentioned that the equations needed to be linearly
independent. That is actually not an easy thing to check (even though it is easy to define). It turns out
that there is a characteristic number for a set of equations that indicates whether or not there is a solution
to them. This number is called the determinant, and it turns out to be somewhat difficult to define. The
following serves as a decent definition for the general case of an n X n matrix.

Definition 2.29. The determinant of a n X n matrix can be found by
1. Putting the matrix in upper or lower triangular form (i.e., conducting row reduction).
2. Once in triangular form, multiplying the values on the diagonal gives the determinant.

Here, triangular form just means eliminating all of the entries in the matrix either above or below the diago-
nal. There are a few caveats when using this approach to compute the determinant. While you can always add
a multiple of one row to another row, for other row-reduction operations more care is needed. The following
list provides guidance for the reduction process.

Table 2.1: A list of operations that can be done for computing the determinant, and the associated effect of the operation.

Type of operation Effect
1| Add a multiple of one row to another row No effect
2 Multiply a row by a constant, ¢ Determinant is multiplied by ¢
3 Interchange two rows Determinant changes sign
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Example 2.12 (Determinants.). Consider the matrix we just examined in the material above

A= (2.62)

N — W
N — N
|
Q) =t

To find its determinant, we first perform row operations (but not interchanging any two rows, and not
multiplying any row by a constant) to eliminate the entries above or below the diagonal to make a
triangular matrix. A quick glance at the matrix A indicates that either way will be reasonably easy.
One set of steps is as follows: (a) Multiply row 2 by —2 and adding it to row 3 (replacing row 3 with
the sum), (b) multiply row 1 by —1/3 and adding it to row 2 (replacing row 2 with the sum) should do
it. The result is

32 1
A=|01/3-4/3 (2.63)
o 0 5

That wasn’t too bad. According to our definition, the determinant is just the product of the entries on
the diagonal.
det(A)=|A|=3x%x1/3x5=5 (2.64)

Here, two forms of notation for the determinant (“det” and the vertical bars) have been shown primarily
for reference.

There are several reasons that the determinant is handy. For our purposes, it is useful because it can tell
you whether or not a set of equations has any redundancies (i.e., whether or not it is linearly independent).

Definition 2.30. A square matrix A is linearly independent if and only if it has a nonzero determinant,
det(A) #£ 0.

By the way, the if and only if (sometimes iff) statement means that the results apply both ways. Above,
for instance, it means “if a square matrix has a nonzero determinant then it is linearly independent” and “If
a square matrix is linearly independent, then it has a nonzero determinant.”

There is a method of solution of linear systems called Cramer’s rule that involves only computing deter-
minants. It is useful for small (2 by 2 or 3 by 3) matrices where the determinants are not difficult to compute.
This method is discussed further in the problems.

2.4 Calculus

This review of calculus will be, like the sections before, short and focused more specifically on topics that
are useful review for the material to come rather than an exhaustive summary of the subject. The logical
starting place for a review is the definition of the derivative.
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2.4.1 The Derivative

Definition 2.31 (The Derivative of a Function). A derivative of a continuous (at least C!, as defined above)
function, f, at a point x in the domain of the function is defined by the limit

100
S ==y 269
or, equivalently, we can define
oy e S HAX) — f(x)
Fx) = AI;IBO Ax (2.66)

There are at least two common notations for the derivative: f’ and %. For functions of a single variable,
there is little chance for confusion. Sometimes, for purposes of clarity or presentation, one of the two is
preferable to the other, especially when multiple functions of different dependent variables are considered.

Note that the definition of the derivative automatically provides the definition of higher-order derivatives.
For example, consider the function g(x) = f’(x). Then we have

0= 1) = fm, S50

Or, establishing the notation for the second derivative

_dZJ_ li f’(x—&—Ax)—f’(x)

= = lum
dx?  Ax0 Ax

1)

Or, applying the original definition of the derivative given by Eq. 2.66, we find

_d&f i Fx+2Ax) = 2f(x+ Ax) + f(x)
T Ao (Ax)?

f(x)

2
This provides some explanation for why the second derivative is denoted by %.
Generally, we do not derive the derivatives of functions from first principles, except perhaps in our intro-
ductory course on calculus. However, it is useful to recall how this is done.

Example 2.13 (Derivatives.). Computing derivatives directly from the definition of the derivative is

not tremendously difficult, but sometimes it does require a little creativeness in determining the limit.

As an example, let’s look at how to find the derivative of the function f(x) = x2.
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oy J) = f(x)
f(x)—}gr; r—x
. tz—x2
= lim
t—=x —X
:lim(t—x)(t+x)
t—x r—Xx
:}ES(H_X)
=2x

Using the definition of the derivative, it is also possible to derive what the derivative of a product of two
functions is. This is called the product rule for differentiation or the Leibniz rule for differentiation.

Theorem 2.3 (Product Rule for Differentiation).

d

2. V@e@)] = f'x)gl) + f(x)g'(x) (2.67)

Proof. The proof for this is just a straightforward application of the definition of the derivative

40 P~ S0
T80+ [f(3)8l0) — F0)50)) ~ F2)ee)
t—x r—Xx
i PO SO0 [0t
= U o(2) 4 528 =

There is another rule for differentiation that is essential; this is the composition rule for derivatives, more
frequently called the chain rule for derivatives. This rule is handy when one has functions embedded in other
functions; in other words, a composite function.

Definition 2.32 (Composite Function). A composite function is a function whose independent variable is
also a function.

As an example, consider the relationship between position and velocity. Suppose that you have a position
function (in one dimension) such that x = x(¢). Then the velocity, which depends on position and time,
v(x(2),1), is a composite function.

The chain rule provides a method of computing the derivative of composite functions. The proof of the
chain rule is pretty complex, so it will not be presented here, but it is available in nearly every introductory
text on calculus. The result, however, is important and will be used frequently in the material that follows.

Theorem 2.4 (Chain Rule for Differentiation). Suppose we have a function, f whose argument is another
function, g. Assume that g(t) has a derivative in the set of points T = {t : a < x < b}, and that f(y) has a
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derivative in the set of points Y = {g(t)}. The composite function f(g(t)) is differentiable, and its derivative
is given by

d df(g) dg(t)
Ef(g(f)) = de dr

Keeping the functions g and f straight sometimes causes confusion. Some examples are helpful.

Example 2.14 (Product Rule, Velocity-Position Example.).

Above, we mentioned the relationship between position and velocity as an example that could be
considered a composite function problem. This is one example where one can compute derivatives
both with and without the use of the chain rule. In essence, it provides a way to validate that the chain
rule leads to correct results.

Suppose you go out to run along the street, but in a very strange way (why you decide to do this is
open to discussion). As you run along, you run in a way such that your position is the cube of the time
you have been running (obviously, you can’t keep this up forever, but for a short time it is possible.) In
particular, suppose your position, x(¢), is given by x(z) = %t3. Now, we know that velocity is defined
as the time rate of change of position, and acceleration is the time rate of change of velocity, so

v(e) = 20 ar) = 20 @)
=42 =

From here, we are going to do something that seems a bit unusual, but it is necessary so that we can
validate the chain rule. First, note that we can express x as a function of v, as follows (noting v = £

1
implied  =v2)
3
v2 (B)

Now, we have expressed x as a composite function, x(v(z)). We can compute the time derivative of this
function by

dx(v(r)) _ dxdv
dt  dvdt

dx _d (13) 137
v v \3 )2

and dv/dt has already been computed above in Eq. (A). Combining these, we find

We can compute dx/dv by



64 2 Mathematical Definitions, Concepts, and Review

dx(v(t)) dxdv

dt  dvdt
11
= <2V2) (2f)
and substituting v = ¢? gives the result
ax(vlt) _
dt

which is identical to what is given in Eq. (A) above.

Example 2.15 (Product Rule.). Some kinds of catalyst can be deactivated by chemicals produced dur-
ing the catalytic reaction, or by external factors such as UV light. This process is sometimes called
catalytic poisoning. Similar kinds of deactivation can happen to the enzymes in cell systems in bio-
logical reactors.

Suppose that an experiment is run, and it is determined that the amount of product begin produced,
under conditions of deactivation (whether cells or catalyst), is given by

c(t) = coexp [— (ko — ki1)1]

In other words, an first-order-like rate process has an effective rate constant that is a function of time,
(that is, ke f fecrive = ko = kit). Determine the rate of reaction, ¢’(r).

Solution.

Using the product rule requires that we first identify the composite functions. Often, in practice,
this is not done explicitly; rather, people just keep mental note of which function is which. However,
it is instructive to explicitly identify the functions when there is any potential for confusion. For this
problem, take

g(t) = —(ko— ki)t
f(g) =coexp(g)

We need to recall the definition for the derivative of the exponential
exp(g) =ex
8 P8

The exponential is the only function (except the function 0) whose derivative is the same as the starting
function! With this, we have all we need.
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dg(t) kit
o~ k=)
df(g) _
iy P (8)
So, the result is .. .
d _ df(g) dg(t)

= coexp(g) [—(ko - %t)}

Substituting the function g(x) (from above) into this result and rearranging gives the final result

%f(g(f)) = —co(ko — I%t)exp [— (ko — k1t )t]

2.4.2 Partial Derivatives

There is not much more to say regarding derivatives, except to explain the notion of a derivative when a
function has multiple independent variables. So, with out delay, we will define the partial derivative of a
function with two independent variables. The case of additional independent variables is identical, so no
more than two is required for the definition.

Definition 2.33 (Partial Derivatives). For a function with two independent variables, a partial derivative is
the derivative of the function with respect to only one of the two variables (the other variable being held
constant.) Assume that f(x,#) a continuous (at least C 1 function of of x and # over a domain (2 could be
an irregularly-shaped domain, so we will skip an effort to provide a more detailed set description of it). The
partial derivative of f with respect to each variable is given by

Of(nt) _ i St Av) = fx)

ox :A;lc—>0 Ax
af(x7t) — lim f(xat+At)_f(x7t)
ot At—0 At

Similar results hold for functions of three or more variables, and the extension should be reasonably
transparent based on the examples above.

Definition 2.34 (The Chain Rule for Functions of Two or Three Variables). Recall that a composite
function is a function whose independent variable is also a function. When a function is dependent upon two
or more variables that are themselves functions, the Chain Rule allows us to determine the derivative in the
following form
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d _dfdx dfdy
i (x(f)d’(f))—aa oy di

Note that in this definition, the derivatives of x(¢) and y(¢) are not partial derivatives, but conventional
derivatives. This is because x(¢) and y(¢) are functions of a single variable, t. Therefore, the conventional
derivative is the correct form of the derivative for those quantities.

2.4.3 Integration

Integration is a simple concept, but it turns out to be quite deep in actual applications. In introductory
calculus, the concept of the Riemann integral is introduced. This integral applies to most functions that are
encountered in science and engineering; in particular, it is useful for evaluating functions that are piecewise
smooth as defined previously. This is not the only kind of integral that can be defined. For example, consider
the following function (the Dirac function)

1 if x is irrational onx € [0, 1]
0 if x is rational on x € [0, 1]

oo ={

This function is not piecewise smooth because it has an infinite number of holes in it (i.e., it has a hole
at every possible fraction between 0 and 1!) The conventional Riemann integral cannot be used for such a
function. However, there are more general forms of the integral (such as the Lebesgue integral) that can be
used to measure such functions. We will not explore the Lebesgue integral in this text, but we will introduce
(broadly) the ideas behind it at the end of this section on integration.

For our purposes, the development of the integral will not be reviewed in detail. Instead, a few important
properties of the integral are presented.

2.4.3.1 Riemann Sums, the Integral, and the Differential

While a thorough treatment of integration theory is not needed here, some reminders about the definition of
the conventional integral of continuous functions is useful. The primary purpose here is to review the basic
idea of the definition of the integral rather than to generate the most general notion possible. Therefore, it
suffices for now to consider continuous functions (although functions with any finite number of disconti-
nuities are also covered by this definition). Suppose we want to compute the integral of a function, f of a
single independent variable, x, over some interval x € [a,b]. Recall, this corresponds to the area under the
curve between a and b. If we were given a such a curve and asked to compute the area graphically, we
might be tempted to estimate the area by constructing a sequence of rectangles approximating the curve
(see Fig.) . Suppose we do so, and we make each such rectangle have the same width on the x—axis. Let
X ={x1,x2,x3...xy} such that x; ;| —x; = Ax (a constant) forall i = 1 to N — 1; hence, Ax= (b—a) /(N —1).
The following sum is an approximation to the integral of f

fax = Z fxHAx (2.68)
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Fig. 2.19: Two examples of Riemann sums. For these example, x; was taken at the midpoint of each rectangle. On the left, a
divisions of the domain with N = 10, gives a total of 0.4424; this represents a 32% over-estimate of the actual value. On the
right divisions of the domain with N = 100, gives a total of 0.4424; this represents only a 3% over-estimate of the actual value.

where x; is any value of x such that x; < x; <x;y;. In this computation, then, f (xl*) is an estimate of the
height of the rectangle between x; and x;;;. Hence, the sum defining f4, is an estimate of the area under
the curve. As Ax is taken increasingly smaller, the sum naturally becomes increasingly accurate because a
constant height becomes a better representation of the function in each rectangle. The Riemann sum is then
defined by

b i=(N-1)
| r@d= jim L seax (2.69)

An example of the process of refining a Riemann sum is given in Fig. 2.19

A few notes are worth pointing out here. First, note that the integral sign actually comes from an elon-
gated “S” as a reminder that the integral arises from a sum. Second, the term dx in the integral has a specific
interpretable meaning. It is commonly called a differential, but the concept of a differential is not as straight-
forward as it might appear on the surface. In fact, for many years even after the invention of calculus, the
concept of the differential was not all that clear. While there are many ways to make the concept of a differ-
ential formally concrete (it can be defined as a linear map from the real numbers to the real numbers Protter
et al. (2012, Chp. 7)), for our purposes it is sufficient to consider it as follows.

A differential is a non-zero approximation to the change in a function with a change in the dependent
variable being as small as needed to make the approximation attain the accuracy desired. To be more formal,
for a function g(x), the differential is given by

dg = g'(x)dx (2.70)

where dg stands for a “small” change in the function g, and dx stands for a small change in the independent
variable. In this case, the meaning of “small” is a qualified one; it means small enough such that the error
involved is less than some specified error. Importantly, the concept is that the error can be driven to zero as
dx approaches zero. While we have not yet reviewed the concept of the Taylor series (this appears in the
material following), one can use a Taylor series to define the concept. Recall

g(x+Ax) = g(x) + Axg' (x) + O[(Ax)*] +. .. (2.71)
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Supposing that Ax < 1, then (Ax)? < (Deltax), and the terms of (Ax)? and higher can be dropped relative
to those involving Ax. Rearranging we have

gx+Ax) — g(x)+ = Axg'(x) (2.72)

Now, we note that the symbol dx is used to indicate Ax under the conditions that Ax can be made arbitrarily
small (this is, in essence, its definition); similarly, dg = g(x+ Ax) — g(x). This gives us

dg =g (x)Ax (2.73)

Note that if we take the function g(x) = x we end up with the relation dx = Deltax. This explains the use of
dx in the representation of the integral. By convention, the equality dx = Deltax means that definition of the
differential is given by

dg = g'(x)dx (2.74)

This is more than simply a formal manipulation of symbols. Once we have defined differentials to be
quantities whose error can be made as small as we like, then the resulting structure is essentially a linear
one. Some powerful methods in the analysis of, for example, non-Euclidian geometry. They also arise in the
study of differential equations.

2.4.3.2 The Fundamental Theorem of Calculus

The fundamental theorem of calculus says some really important things. Primarily, it tells us the following.

Theorem 2.5. Suppose a smooth function, F, is defined on the interval |a,b). Because the function is smooth,
it has a derivative, F' = f. Then

t=b
[ Fdi=F )~ F(@)

or, equivalently,

t=b

" dF (1)

——=dt=F(b)—F(a

| S =) -F
t=a

The extension of this theorem to piecewise continuous functions is straightforward. It involves simply com-

puting the integral over each of the (finite number) continuous intervals.

This is a very powerful theorem, and it essentially maps the problem of finding integrals on to the problem
of finding derivatives. That is to say, if we are given a function, f, and we happen to know a function F
whose derivative is equal to f, then we can compute the integral of f with that knowledge. The function F
is sometimes called the antiderivative of f for that reason. Although this sounds somewhat circular, it is not.
Most of the “known” integrals that exist do so because we have identified the antiderivative for the function.

For many, a first course in calculus involves learning many “techniques” to find the antiderivative of
functions. Most of this we will leave in the past, with the idea that we will all remember (or be able to look
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up) most of the fundamental integrals and derivatives that we encounter. However, there is one “technique”
that is very useful in a number of applications, and it is one that we will have the opportunity to employ
several times. This is the rule for integration by parts.

Theorem 2.6. Let f and g be smooth functions on an interval x € [a,b]. Then

T dg()
/ f s

—b J
— / Mg(x)dx

dx = f(x)g) -

X=a X=a

Frequently, this rule is written in the easy-to-remember form

x=b

/ udv = uv

X=a

Integration by parts is particularly useful under the following circumstances: (i) there is an integrand of
the form of a nth-order polynomial times some function that we know how to ingegrate n times, or (ii) there
is an integrand that contains an th-order derivative times some function that we know how to differentiate n
times, and we would like to eliminate the derivative. This will be made clearer in the following example.

Example 2.16 (Integration by parts.). Integrate the following functions over the interval x € [0, 1]

(a) f(x) = xsin(7x)
af . .
(b) glx) = Iy sin(mx) given £(0) =0
Solution. For (a), let u = x, dv = sin(wx)dx. Then, du = dx and v = —mcos(mx) (noting

d/dx(— cosx) = sinx). Then

1 1
1
/xsin(nx) dx = %cos(ﬂx)’o—/—cos(ﬂx)dx
0 0

1 1
= — +sin(7x) ‘0

SYRERS

For (b), let u = sin(7x), dv = %dx. Then, du = 1/mcos(nx) and v = f(x) (fundamental theorem
of calculus). Then



70 2 Mathematical Definitions, Concepts, and Review

1
/gsin(n?x)dx: %cos(ﬂx)f(x)‘;—/f(x)%cos(n:x)dx
0 0
1
= —/f(x)%cos(nx)dx
0

In this latter example, we can go no further than this without knowing more about f; however, we have
eliminated the derivative, which is frequently a useful operation.

2.4.3.3 Lebesque Integration

In the material above, we presented an example of the Dirac function that was not integrable using the
conventional (Riemann) integral. Here, consider the following variation of that function

x if x is irrational onx € [0, 1]
0 if x is rational on x € [0, 1]

o0 ={

This is a function that maps all possible values of the independent variable x on the interval X = {x:
x € [0,1]} to some real number (in this case, this real number is also on the interval f(x) € [0,1]). In the
mathematical literature, this function (mapping) is sometimes written as “f : X — R”, which just means (in
written English) “each element of X is assigned exactly one value in the real numbers”.

In the early 1900s, a French mathematician named Henri Lebesgue generalized the integral by thinking
about it in a slightly more abstract way. Instead of considering a “nice” function in which we partition
up the domain, and then consider various kinds of limiting operations that allows us to assign a value to
the integration (which corresponds to “area” under a curve for strictly positive functions), he considered
partitioning the range instead. In Fig. 2.20, and example of this process is provided for a function f(x)
where the range and domain are both on the intervals [0, 1]. Now, instead of vertical bricks being summed
up over an interval, we have “horizontal” bricks being summed up over the appropriate values of the range
that correspond to x € [0, 1].

If we can assign a sensible measure to the interval x;, then we can compute the area of each such brick; the
sum of these is, after the appropriate limiting process, the integral. The problem now is to interpret what is
meant by assigning a measure to the interval x;. For Riemann integrable functions, this measure corresponds
to the conventional one that we think about for Riemann sums.

Measure Theory is the discipline within mathematics that deals with the question of “how do we assign
metrics to mathematical quantities?” We are all familiar with the conventional Euclidian metric in R3— it
is just the length of what we think of as vectors. So, for a point (x,y,z) with origin (0,0,0), the Euclidian
metric 18

d(x,y,z) = /x> +y*+22 (2.75)

For more exotic sets (such as the example of the rational numbers on the real line), a number of clever
methods have been developed over time to assign a rational notion of “measure” to such sets. In particular,
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Fig. 2.20 The division of the
range for a Lebesgue integral. 1 —
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the measure that is used by the Lebesgue integral assigns a zero measure to isolated points (i.e., a single
point on the number line is assigned zero distance, somewhat in accordance with our intuition). It turns
out that the rational numbers are much less dense than the irrational numbers— that is, in a sense there are
many more irrational numbers than there are rational ones. Thus, by the Lebesgue measure, the rational
numbers look like isolated points that have a zero measure. While I have summarily stated that such a
notion exists, actually illustrating how to do this constructively is well beyond what we can accomplish
here. However, such considerations are not devoid of intuition. The the rational numbers can be put into a
1-to-1 correspondence with the real numbers; if you have never seen this construction, Fig. 2.21 contains
the essence of the argument. So, while the rational numbers are denumerable by the integers, the irrational
numbers are not. And, these are the only two choices— either a number is rational, or it is irrational. So,
the irrational numbers are much more dense than the rational ones. Hence, we can legitimately think of the
rational numbers as permeating the set of all possible real numbers with isolated holes (points). Because
the points have no measure, then the measure of any real interval, say [a,b] is just 4 = (a — b). Again, it
may appear as if we have accomplished nothing here, but this is not true! The conventional Riemann sum
for integrals does not exist for a set like the irrational numbers on [0, 1]- there is legitimately no way to
even consider making intervals in such a case (What if one of the the interval end points lands on a rational
number? What happens as you let Ax tend toward zero— it must pass though rational numbers! There are
many such problems...) However, with the Lebesgue method of integration, this is no longer a problem.

For the purposes of this text, this is all we need to discuss about the Lebesgue integral (although there
is much more that can be said about it!) It is worth noting, however, that you may encounter this kind of
integration in the mathematical literature. If you do, you have most of the idea behind what such integrals
actually represent, and you may still be able to read through the material. As a final note, in the mathematics
literature, one often encounters the concept of the integral of the square of a function. This is usually called
the L, metric, and it is understood that it is measured relative to the Lebesgue measure (hence the “L” in the
symbol for the metric).



72 2 Mathematical Definitions, Concepts, and Review

Fig. 2.21 Enumerating the
rational numbers using the
integers.

2.5 Sequences and Series

Infinite sequences and series are incredibly useful, and they are the true workhorses of applied mathematics.
Many important functions (especially many of the transcendental ones that we use routinely, such as sin(x)
and exp(x)) are frequently defined and/or computed by use of an infinite series. The coverage of sequences
and series here is necessarily limited. However, in the chapters following, we will have ample opportunity
to revisit these concepts.

2.5.1 Sequences

Sequences are related to series. One way to think of a sequence, is that it is just a indexed list of numbers
or functional expressions; thus, sequences map the integers (the domain) to a another set (which may be
constants, functions of the integer, or functions of the integer plus additional variables). Thus, summing each
term in an infinite sequence together would be one way to form an infinite series. Although in introductory
calculus courses, infinite sequences are often treated as functions of only the integers, they can also be
functions of other independent variables unto themselves. We will make use of the sums of such sequences
in both the investigation of Power and Taylor series, and in the study of Fourier series appearing in later
chapters.
To make the notion of sequences concrete, we have the following definition.

Definition 2.35 (Finite Sequence). A finite sequence is a list of objects (elements) indexed by a consecutive
subset of the natural numbers (N = {1,2,3,4...N} or Ny ={0,1,2,3,4...N}). In this text, a sequence of N
(or N+ 1 if the first index is 0) terms is denoted A = (ay,az,a3,...,ay) (or A = (ag,a1,az, . . .,ay) if the first
index is 0). The element in the position i (where i € N or Ny) is called the i’ term of the sequence. Regardless
of how the elements are defined, sequences are viewed as being functions over the natural numbers.

Note— the primary feature of sequences is that they are a list indexed by the real numbers. One can think
of this as a column of values on a spreadsheet program, where each entry has a unique number. Also like a
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spreadsheet program, the objects in the list may be functions of the index (its numbered location), or of both
the index and additional independent variables (representing, for example, spatial coordinate or time).

Definition 2.36 (Infinite Sequence). A sequence is a list of objects (elements) indexed by the natural num-
bers, (N ={1,2,3,4...} or Ng = {0,1,2,3,4...}). This list may be specified by a functional rule, or by
listing the elements explicitly. A common notation for an infinite sequence is A = (a,);_; (or A = (an);_g
if the first index is zero).

All of the notes regarding finite sequences apply to infinite sequences as well. In particular, infinite se-
quences of functions that converge in a particular way to a specified function are relatively well-used con-
cepts in applied analysis. We will discuss this concept additionally in the material following.

Example 2.17 (Examples of sequences). Sequences are just lists of objects. Thus, they represent a fairly
general mathematical concept. Here are a few examples.

1. The following is a somewhat boring finite sequence: A = (1,1,1,1,3,1). It has a finite number of
terms (six), and each element is the same, except for the fifth term.

2. The following is an infinite sequence containing all of the even numbers greater than zero: A =
(2,4,6,8,...).

3. Here are two other ways to denote the very same sequence of the previous example: A = (2n)5_,
and S = (2n)pen.

4. Here is an infinite sequence that denotes a familiar irrational number: A =
(3,1,4,1,5,9,2,6,5,3,5,...)

5.Here is a sequence whose terms converge to 1 as n — oo A = (1 + 1/n)>, =
(2,2, 1.2 ) .IWe can compute the following limit for this sequence:
lim =1+1lim(-5)=1.
Tim (a,) = 1+ lim (%)

6. The following example is one which is a function of both the sets of integers (which form the
sequence), and another independent variable (which, for concreteness, we can consider space)

A= (1/(1+ 1/

Thus, this sequence, when computed term-by term, is given by A = (x/2,x/(1+ 1/4)x,x/(1 +
1/9),x/(1+1/16),...). A plot of the first four sequences of the function (n = 1,2,3 and 4) appear
in Fig. 2.22. A little though will indicate that this sequence eventually converges to the function

flx)=x.

In the examples above, we introduced the idea of convergence for infinite sequences. To be concrete, we
need to establish what it means for a sequence to converge. The issue that we need to consider is how to show
that an infinite sequence actually approaches some limit that we define. This is a somewhat tricky prospect.
Suppose we have a sequence denoted by A = (a,),en. If you think about it, there is no actual number de.
All we can really ask about an infinite sequence is the question “what happens as n becomes an arbitrarily
large integer?” This is exactly the notion behind a limit. While we have discussed limits approaching a finite
value in the material previous to this section, we have not yet discussed infinite limits.
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Fig. 2.22 A sequence of 0
whole functions of x. In this 10
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A mathematical discussion of limits inevitably an €-8-like argument. In this case, in stead of having a o
interval in which some error measure must be small, we instead have an integer for which all values of the
sequence indexed by this integer or higher are sufficiently close to a limit. To make this clear, here is the
definition of the limit of a sequence. Here, for clarity, we focus on sequences that are a function of only n
(unlike the final case described in the previous Example); however, extension of these concepts can be done
on a pointwise basis for sequences of functions.

oo

Definition 2.37 (Limits of a sequence: Sequence convergence). Suppose (a,)5_, is a sequence. Then, the
limit, L, exists if the sequence gets arbitrarily close to L as n increases. In other words, for every € > 0 that
can be chosen, no matter how small the value of €, then it is also true that there is an integer, N, such that

if n>N, then |a,—L| <& (2.76)
In that case, we say that (a,);"_, has a limit, L, and write

lima, =L (2.77)
n—oo
If a sequence is not converging, does that imply that it must be diverging? The answer here is no as evi-
denced by the counterexample (a,);_, = (—1)",n=1,2,3.... This sequence neither converges nor diverges;
it simply oscillates between —1 and 1 periodically. A definition for a diverging sequence can be made, and
it is stated as follows.

=

Definition 2.38 (Diverging sequences). Suppose (a,);-_; is a sequence. Then, if a, tends to infinity as n
becomes arbitrarily large, the sequence is said to diverge. In other words, if for every number M < oo, no
matter how large M, then there is still always an integer N such that

if n>N, then |ay| >M (2.78)
In that case, we say that (an);,"’:l diverges (i.e., the limit tends to $-co).
lim a, = or lima, = —oo (2.79)
n—yo0 n—yoo

One of the problems with deciding if a sequence is convergent using this definition is that one needs to
have a limit, L before the definition can be tested. A way around this problem was described in a work by
the French mathematician Augustin-Louis Cauchy in the early 1800s (although it was technically described
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by the mathematician Bernard Bolzano (from what is now part of the Czech Republic) first!) The interesting
insight that Cauchy (and Bolzano) had was to define convergence by the behavior of terms relative to one
another rather than in an absolute sense. Before presenting the definition, note that the logical terminology
“if and only if” (iff) is used in this definition. This means only that the definition works in both directions.
This will be explained additionally after the statement.

=)

Definition 2.39 (Cauchy Sequences). An infinite sequence (a,);,_, is called a Cauchy sequence iff for
every possible choice of € > 0, there exists a positive integer N such that .

|l@n —aml|| < € for all m > N for alln > N

Just a note about the terminology “iff”. In the defintion above, the “iff” indicates that if you specify a value
for €, then you can always find values for n,m > N such that the proof is true. Also, if you specify a value
of N, then for all n,m > N you can always find a value of € such that the proof is true. So, the proof works
both directions: an N is implied to exist if the sequence is Cauchy. In the other direction, if an N is specified,
then a value of € is supposed to exist if the sequence is Cauchy.

The usefulness of Cauchy sequences can be found in the following theorem, versions of which were
proven by both Cauchy and Bolzano.

Theorem 2.7 (Cauchy criterion for convergence of a sequence). A necessary and sufficient condition for

convergence of a sequence (ay);_, is that it is a Cauchy sequence.

Again, some additional explanation is needed here regarding the term “necessary and sufficient”. This
terminology is related to “if and only if” in a sense. The terminology “necessary and sufficient” is used to
indicate whether or not the conclusions of the theorem always imply the initial statement (i.e., whether or
not the proof is valid in reverse). In short, “necessary and sufficient” means that the proof is always true in
the forward direction (all Cauchy sequences converge), but only sometimes true in the reverse direction (not
all convergent sequences are Cauchy sequences). In this case, “sufficient” is used to indicate that the obser-
vation of convergence is evidence to suggest that a sequence could be Cauchy (a non-converging sequence,
therefore, cannot be Cauchy), but it is not sufficient evidence to prove that it is true. Something else must be
added (e.g., the definition given above) to determine if a convergent sequence is Cauchy.

In summary, the concept of a Cauchy sequence is a powerful one because it allows one to investigate
convergence properties of a sequence without first knowing the limit. This closes an important logical gap
(i.e., if one knows the limit of a sequence, then it is already obvious if the sequence converges or not!), and
was an important landmark in abstract mathematical analysis.

2.5.2 Series

With the concept of sequences defined, it is relatively straightforward to define an infinite series. In short, an
infinite series is the sum of some infinite sequence. However, it is frequently useful to think about them in
the following sense.

Definition 2.40 (Series). Suppose (a,);_, is a sequence. Now, define the partial sums of the sequence by

n=N
SN = Z ay
n=0



76 2 Mathematical Definitions, Concepts, and Review
i.e.,

So = ao

St =ap+a
SHr=ay+ata
S3=ap+a1+a+az

Then, the S, are known as the partial sums of the series. As we allow N — oo, the partial sums define the
following infinite series

S= i ay (2.80)
n=0

There are two important things to note here.

1. As noted above, it is not necessary that the lower bound of a series start at 0. However, most series
used routinely in applied mathematics start at either O or 1. If starting at some integer other than 0, the
definitions above would be modified in the obvious way.

2. Not all series necessarily converge. In fact, it turns out that even some non-convergent series are useful
in applied mathematics. In fact, if you have ever applied Stirling’s approximation for the factorial

n!~\/27tn(n>n<l+ ! ! 139 ST > 2.81)
e

T2n T 2882 518403  2488320nF

then you have used a non-convergent series. The concepts of convergence are one of the most important
in applied mathematics, so some review of important results will be presented in the material following.

3. Infinite series are often used to represent whole functions. As described under the material on sequences,
we can think of the terms in the series to be the sum of a sequence of functions of both n and some other
independent variables.

2.5.3 Series Convergence

To start, it is important to define what it means for a series to converge. As we have seen above, the list
of partial sums form a sequence, so the study of convergence of sequences and series are substantially
intertwined.

Definition 2.41 (Convergence of an Infinite Series). Suppose we define the partial sums of an infinite
series, S, as we have above. Then, the series is said to converge if the partial sums tend toward a fixed limit
LasN — oo

N
S=limsy=Y a,=L (2.82)
n=0

N—yoo
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Definition 2.42 (Absoslute Convergence of an Infinite Series). Suppose we define the partial sums of an
infinite series, S, as we have above. Then, the series is said to converge absolutely if the partial sums tend
toward a fixed limit L as N — oo

N
§ = lim sy :r;)|an| =L (2.83)

There are a number of convergence tests that can be applied to determine if a sequence (or series) converges.
The tests below apply for any kind of series (except as noted), and include (1) the integral test, (2) the com-
parison test, (3) the limit comparison test, (4) the ratio test, (5) the root test, and (6) the Leibniz convergence
test. These are presented, without proof, as follows.

The following definitions and convergence theorems are provided below, without proof. The theorems
are all well-known, and you may have encountered in your studies of calculus. Proofs can be found in any
introductory text on calculus that covers infinite series.

Theorem 2.8 (The integral test). Let (a,);>_, be a nonnegative (i.e., each term is positive or zero) sequence,
and let f be a continuous, monotonically decreasing function on [0,) defined such that

f(n)=a, forn>1 (2.84)
Then the series oo
Y a (2.85)
n=1
converges if and only if the integral
/m] fx)dx (2.86)
=

is finite.

Theorem 2.9 (Comparison Test). Suppose it is known that the series Y, |bn| converges. If, for a second
series Y |ay,| the condition |ay,| < |b,|, then the second series in a, also converges.

Theorem 2.10 (Limit Comparison Test). Suppose the series Y |b,| converges. For a second series,

Yo o lan|, we wish to determine the convergence properties. If the condition
lim -2 =L (2.87)
N—eo | by

where L is some finite number, then the series associated with a, also converges.

Theorem 2.11 (Ratio Test). Suppose a, is not equal to zero for all values of n. We can say that a series
converges (absolutely) if

lim |al’l+1 |
n—es |ap|

<1 (2.88)

This latter expression is called the (general) ratio test (which you may have learned in a course on calculus).
Note that if r = 1, it is not obvious whether the series converges or diverges.
The converse is also true; that is, a series is said to diverge if
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fim 2l (2.89)

n—e |ay|
If the limit of this quantity is exactly equal to 1, then nothing can be said about convergence of the series.

Theorem 2.12 (Root Test). Suppose that one computes the limit
1
lim (|a,|)n =L (2.90)
n—oo

and that L is a finite number such that L < 1. Then the series converges (absolutely). If L > 1 then the series
diverges. If L = 1, the convergence of the series is undecidable by the root test.

Theorem 2.13 (Leibniz convergence test).

Suppose the sequence (|a,|)I=5 is

1. A monotonically decreasing sequence (|ay+1| < |ay| for all values of n), and

2. lima, =0
n—soo

Then the alternating series

i(—l)"an (2.91)
n=0
i (-1)"ay, (2.92)
n=0

converge.

2.5.4 Power Series

A power series is just a label applied to a particular kind of series. A power series is defined by any series of
the form

flx) = i [ (2.93)
n=0

One very significant distinction that separates power series from series more generally is that power series
are defined by the sum of a sequence of functions. Note that comparing a power series with the general series
described above, we have the important correspondence

an, = cpX" (2.94)

Note that for a power series (as with series in general) the lower index can start at any number, although
this number will generally be O or 1. Power series are one of the most frequently used devices in applied
mathematics. Note that the power series can also be shifted to be defined around any point, a, in the domain
as follows
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= Y dy(x—a)’ (2.95)
0
where now we have the correspondence

ayp=dy(x—a)" (2.96)

This shifted form of the power series can be a convenient notation to use. Note, however, one could in prin-
ciple expand the series, and regroup terms to recover Eq. (2.93). Therefore, Egs. (2.93) and (2.95) represent
two different ways of expressing the same series (i.e., they can be equivalent).

In analogy with the discussion above, one can define the partial sums of a power series as a sum truncated
at some finite term numbered N. Being explicit, note that the first few partial sums of the power series defined
above are given by

S():Co
S =co+cix
Sr =c¢o +c1x+czx2

S3=c +c]x+czx2—|—c X
3 0 3

It is useful to compare these partial sums with those given in Definition 2.40.
In the next example, we provide the power series representation of a few familiar functions.

Example 2.18 (Power Series.). Trigonometric functions are examples of transcendental functions (as
introduced above). By definition, this means that there is no finite set of algebraic steps that one can use
to generate such functions (e.g., there is no polynomial that will reproduce them exactly). If you think
about trigonometric functions, you will realize that you have probably never been asked to compute
the value of, say, the sine function yourself. This is because the sine function must be defined by an
algorithm that has, in principle, an infinite number of steps!

Although functions like sin(x) and cos(x) cannot be represented by a finite number of algebraic
steps, they can be represented by an infinite number of algebraic steps. The following are the power
series for these functions.

w 2 4 6

cos(x :g :1_5+5 gt (2.97)
o 2n+1 )C3 x5

sin(x ; 2n+1 —x- R (2.98)

While it is true that, in principle, the value of these functions is defined by an infinite number of terms,
it is often the case with series that the terms defined by increasingly large n become smaller and smaller
in magnitude. In a practical sense, this means that it is often possible to get a good representation for
a series at a point of interest by using a finite number of terms. As an example, in the figure below
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we plot the approximation to the sine function using N = 2,5, 10, and 20 terms. It is clear that even
for N = 2, the power series actually gives a good approximation to the function in the interval of
approximately 0 < x < L.5.

f(x)

1.0
0.5¢ — N=2
N=5
; ~ X N=10
2 4 6 é 10"
-0.5 \
-1.0t \

Fig. 2.23: The sine function approximated by its power series, using an increasing number of terms.

2.6 Taylor’s Theorem and Taylor Series

A Taylor series is a particular power series named after the British mathematician, Brook Taylor, who made
it famous. The genius of Taylor was to work out how one might compute the terms in a power series for any
function for which one knows the derivatives. Interestingly, Newton himself also developed what we now call
the Taylor series (Ferraro et al., 2008), although his original manuscripts on the topic remained unpublished
in his lifetime. Even more curiously, a Scottish mathematician named Colin Maclaurin promoted Newton’s
unpublished methods on infinite series (with Newton’s approval) in a mathematics textbook; in this form
the series were expanded around zero and are called Maclaurin series. Newton, Maclaurin, and Taylor were
all members of the Royal Society of London contemporaneously. Both Maclaurin and Taylor knew Newton
personally (O’Connor and Robertson, May 2017), and it seems plausible that Maclaurin and Taylor very
likely knew one another too. While these three scientist-mathematicians knew of each other, much of the
work by them on series contains unique contributions from each of them, and, in many cases, there was even
“re-invention” of the same ideas independently. This perhaps underscores the idea that science (especially
in the days where communication was not immediate as it is today) is often a pattern of discovering and
rediscovering. There is an adages that says something to the effect of “the person credited with a discovery
is usually just the one that was able to describe it well enough that it need not be rediscovered again.” Taylor
series turned out to be one of the most important developments in analytical mathematics; therefore, it should
not be too surprising that the ideas were built up over a period of time, and not exclusively Taylor’s.
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2.6.1 Taylor Series

Taylor series are a particular form of power series. What makes them distinct from generic power series is
that the coefficients ¢, are defined by combinations of the derivatives of the function that is to be represented
in series form. To start out, lets constructively define the Taylor series as follows.

Definition 2.43 (Taylor Series). For a function that has an infinite number of derivatives at a point, x = a,
that function has a Taylor series expansion that represents the value of the function at a location x = (a + Ax)
as follows (where Ax = [x — a] or, equivalently, x = a + Ax)

dff 1o o df 1 s d
) — A Y LA &L —(Ax)? 2L
flatAx) = f(a) +Ax = x:a+2!( X7 X:a+3!( X723 x:a+

)
or, equivalently, the following notation is frequently used

fx) = fla)+ (x=a)f'(a) + %(x —a)’f"(a)+ %(x —a)f"(@)+ ..

Finally, note this last form can be written in the familiar summation notation for the Taylor series
G
fo=Y T(x—a)”
n=0 :

where f (") is the n’h derivative of the function f, and the factorial of an integer, n, is defined by n! =
n-(n—1)-(n—2)...2-1,and 0! = 1. Note that with this definition, we have that a Taylor series is a (shifted)
power series of the form

where, recall, the coefficients d, are defined for the shifted power series given by Eq. (2.95), and these
coefficients are distinct from those for the non-shifted power series.

This definition says nothing about whether or not this series converges or not; the topic of convergence is
addressed material that follows. In the introductory material on Series above, the notion of partial sums of
sequences was defined as one type of series. This notion is now extended to partial sums of the Taylor series;
each of these partial sums represents an entire function rather than simply a number.

Definition 2.44 (Partial Sums). The partial sum of a Taylor series is the sum truncated at some positive
integer N such that

N )y
fulx) = zof (@) gy

n:

Note, that every infinite series can also be described by the sequence of its partial sums. This is an
important point, because it provides and illustration of how a function might be described by a sequence of
functions, f,, that converges to a desired function, f. This will be shown in the next example. However, first
we need to discuss what kinds of functions have convergent Taylor series. These functions are the analytic
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functions that were described earlier. Here, a second (and more fundamental) definition of the term analytic
is provided.

The Taylor series provides us with an intuitive tool to define analytic functions (which were defined
previously in §2.2.2). This second definition is as follows. Note that x = a + Ax implies that Ax = (x —a).
Thus for a = 0, we have Ax = x (a Maclaurin series).

Definition 2.45 (Analytic Functions— Definition 2). An analytic function is a function which (i) is defined
(i.e., it has a computable value) on an open interval (/) of the real line (/ is the set of values, x, such that
x € (a,b); or, in set notation / = {x : a < x < b}), (ii) its Taylor series converges to a definite value on the
interval 1, and (iii) the definite value it converges to is equal to f(x) for all values of x in the interval I.

Admittedly, that is quite a mouthful of requirements; however, many functions that of are of interest in
science and engineering are analytic. For example, all polynomials on a finite domain are analytic. The
functions sinx, cosx, and Inx are analytic on appropriate domains. So, although the notion of being analytic
seems stringent on the surface, most of the functions we commonly encounter are analytic on some portion
of their domains.

One of the nice properties of all analytic functions is that all of the derivatives of an analytic function
are bounded. In other words, no derivative of an analytic function can grow to infinity anywhere in the
domain where the function is analytic. This is strongly suggested by the fact that all analytic functions have
convergent Taylor series (i.e., any derivative that approached infinity would prevent the Taylor series from
converging to a finite value). Nonetheless, the following theorem is stated without proof.

Theorem 2.14 (Derivatives of analytic functions). Let xq be a point, and r a positive value. Let a function,
f be analytic in an interval around the point xo; that is, for some positive r, the function f is analytic in
{I : xo — r < x < xo+r} Then there exists a positive real number M, such that for every n € N

Mrn!

(r =[x —xo|

)] < G

In other words, the derivatives of f, f (”>, are bounded in the interval, and the derivative cannot grow
arbitrarily large within the interval.

The next example is one that shows that all polynomials are analytic functions.

Example 2.19 (Polynomials are Analytic.). Suppose we have a polynomial on an open interval other
than I = (—o0,00). The polynomial is analytic everywhere in its domain.
This is not a proof, but it could easily be turned into on. Instead, consider a concrete polynomial,
for example
fx) =x* +222+2x+1

defined on the open interval 0 < x < 1. Suppose we want to determine the Taylor series for this poly-
nomial around the point a = 0. We can expand this polynomial in a Taylor series around the point
x = a = 0 to determine the value of the function at the point x = (a + Ax). To do so, we first need to
compute all of the derivatives of f. This seems as though it might be nearly impossible, until we note
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Flo) =+ 20 + 20+ 1
fl(x) =3x* +4x+2
f'(x)=6x+4
7" =6

f<4>(x> =0
Ciz)=0

Now, according to the formula, the Taylor series is given by

83

_ df 2o f s f
fla+Ax) = f(a )—l—Axd— E(A X) ) +3'(A Xx) ﬁ—’—
Noting that, for this example, Ax = x —a = x — 0 = x, then we have
f0)=1
f(0)=2
f'(0)=4
£"(0) =6
P =0
S0y =o0...
_ af 1 J 1 5df
f(x)=f(0)+x dx‘ +2| e 3 3 FO—&-...

Substituting the derivatives above yields

flx )_1+x(2)+21'

Simplifying terms, we find

f)=x*+2x% +2x+1

1
2(4)—|—§x36—|—0+0+0+...

which was the original polynomial. Thus, this polynomial is its own Taylor series! This is actually
true for all polynomials, and it is not hard to prove using the principle of induction. The ancillary
conclusion that can be reached is that all polynomials defined on a (open, non-infinite) domain are

analytic functions.

Example 2.20 (Partial Sums Example.).
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In the previous example, the polynomial f(x) = x* +2x? + 145x — 1, when expanded around x = 0,
had the following partial sums

It is interesting to see how the sequence (f1, f2, f3, f4, f5, - . .) converges to the function f(x) exactly in
this instance. To see this, we plot each of the partial sums on x € [0, 1] giving

f (x)

0.0 02 04 06 08 10%

Fig. 2.24: The partial sums (Taylor polynomials) of the Taylor series of f(x) = x> +2x> 4 2x + 1.

2.6.2 Taylor Series Construction

So, we have established that the Taylor series can represent all analytic functions, and we examined a partic-
ular example of a polynomial that illustrated that the series actually did what we hoped it would. One might,
at this juncture, wonder: why does the Taylor series work? It turns out, that this is reasonably easy to prove.
Again, we will not do this as a formal proof, but rather as a construction that illustrates the method. A formal
proof can be constructed from this outline.
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To start, recall the fundamental theorem of calculus for the function f in the form

x=a+Ax

df
dg

where here we have used & as the variable of integration. This is already reasonably suggestive. Rearranging,
note that we have

——d& = f(a+ Ax) — f(a) (2.99)

X=a

x=a+Ax

fla+Ax) = f(a)+ dg

Now, we use integration by parts once (setting u = d f/d&, dv = d&) to give

d& (2.100)

df df x=a+Ax Pf
fla+Ax) = f(a)+ (a+Ax )dx a+Ax— ax |, édgzdé (2.101)
Now note, also by the fundamental theorem of calculus
xzaMx(a + Ax) @ fdé = (a+Ax) af —(a+Ax) af (2.102)
. d&? dx |, ax dx|,
Rewriting this as
(aran | - X7Ax L e+ (atan) (2.103)
dx|opae J o dE? dx|, '
Finally, substituting this into Eq. (2.101) gives
df x=a+Ax d2f
flatax) = fla)+ Axg] - | - (2.104)
x=a

Repeating this process n times yields Taylor’s formula to term n.

2.6.3 Uniform Versus Pointwise Convergence for Power and Taylor Series

Both power and Taylor series are unique to the study of series because they involve an infinite sum of
functions indexed by the integers > 0. Assuming, for example, that we have a single independent variable in
space, these series can then be functions of both x in some interval / and n € Ny. More explicitly, we have a
sequence of functions whose partial sums are

fox) =Y dy(x—a)" (2.105)
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()

or, assuming a Taylor series where d,, =

n

N r(n)
) =Y ! ,(a) (x—a)" (2.106)
n=0 :

Thus, as far as convergence is concerned, we must consider the convergence of these series for each point x
as n — oo, There are many senses (or modes) of convergence that have been adopted in mathematics. Here,
the discussion will be focused on two that are particularly relvant to series representations of functions; they
apply to the Taylor series described in this section as well as the Fourier series that will be introduced in
future chapters.

Before stating the definitions for these two kinds of convergence, it is possible to generate some intuition
about them. The convergence known as uniform is defined by the idea that one can make the series approx-
imation to the function exhibit a maximum error, &, for every point in the domain. In contrast, pointwise
convergence is not as strict. It suggests that, while every point in the domain must converge, one cannot
necessarily ascribe a singe error, €, which is the maximum error. Instead, the error associated with each
point must be determined independently. Before continuing, recall that a sequence of functions f,(x) (e.g.,
the partial sums of a Taylor series) is said to converge if

lim f,,(x) = f(x) (2.107)

n—oo

Now, we are prepared to present the definitions of pointwise and uniform convergence.

Definition 2.46 (Pointwise Convergence of a Sequence of Functions). A sequence of functions, f,(x) is
said to converge pointwise on some interval [ if for all x € I and for every specified error €(x), we can always
find a value of N such that

|fu(x) = f(x)| < &(x), forall n > N (2.108)

The critical thing to note here is that the value of N needed depends upon both the location, x, and the
value of €(x) selected at that point. For this case, there is no guarantee that there is a single combination of
both €(x) and N that will be valid for all points. This can be a bit confusing to ponder, but an example can
help. In Fig. 2.25(a), a Taylor series approximation to the function f(x) = 1/(x— 1) on the interval x € [0,1)
is illustrated. It is clear from this figure that increasing the number of terms in the partial sums leads to
improved approximations for the series. However, note the following. At the point x = 1, the function tends
to infinity. There are no polynomials that tend toward infinity at a some finite value of x; thus, the error in the
vicinity of the point x = 1 is complicated. While it is true that for any x < 1 (no matter how close we come to
the point x = 1), it is always possible to find a value of N large enough that the error is smaller than any value
of €(x) that we pick, we can only determine this value of N once both x and €(x) are specified. However,
there is no finite value of N that works for all points! For example, suppose we find the minimum value of
N that provides € < ﬁ for x =999/1000. This value of N would be undoubtedly large; however, it would
not also give € < # if we chose x = 9999/10000. Thus, the necessary value of N is always achievable, but
it also always depends upon the values of x and €(x) chosen.

In contrast to pointwise convergence, uniform convergence can be defined as follows.

Definition 2.47 (Uniform Convergence of a Sequence of Functions). A sequence of functions, f,(x) is
said to converge uniformly on some interval I if for all x € I and for every specified error €, we can always
find a value of N such that
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(a)
f(x)
f(x) 2
10007
1 L
100k
N=1
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Fig. 2.25: Series convergence types. (a) A uniformly converging series. (b) A series that converges pointwise.

|fu(x)— f(x)| <€, forallx €I and forall n > N (2.109)

Note the distinction here in the domain of the convergence. Here, a single value of € can be selected,
and it is guaranteed that there is some value of N large enough so that the difference between the series ap-
proximation and the function is smaller than € for every point in the domain simultaneously. In Fig. 2.25(b),
a function that converges uniformly (the sine function) is plotted. While there is always some error in the
Taylor polynomial approximation to the function, it is also possible to make this error as small as we like
everywhere in the domain / simply by taking N to be large enough. In other words, the error has a concrete
upper bound, and that bound depends only upon the size N, but not on the location x that is chosen.

The topic of uniform versus pointwise convergence will arise again in the study of the Fourier series
representation of functions. While the distinction between the two modes of convergence appears to be
subtle, the actual ramifications are large! In a practical sense, uniform convergence means that one can
often find a good approximation to a function that works everywhere in a domain of interest with some
finite number of terms. For a function that converges only in the pointwise sense, the approximation of the
function in an applied sense can be much more complicated.

2.6.4 *The Taylor Series in Approximation Theory

Taylor series, and power series in general, do not always converge; even if they converge, they may converge
only on limited domains. For the series

(x—a)" (2.110)

there are three possibilities for convergence, as follows.
1. The series converges only for x = O (in which case, it converges to zero there).
2. The series converges for all x.

) ) )
3. There exists a number R such that )~ fT,(”) (x—a)" converges for |x| < R and diverges for x > R. For

x = R, the series might converge or diverge.
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Most of the useful Taylor series, as one might imagine, are convergent. This means that they either (1)
converge everywhere on the real line, or (2) converge in some interval |x| < R. Convergent Taylor series
are interesting in that they look like polynomials of infinite-order. In fact, there is no such thing as an
infinite-order polynomial (the proper term there would be a power series or Taylor series), but every finite
approximation of a Taylor series is some finite order polynomial. To see that, suppose that we set ¢, =
" (a)/n!, and that we conduct the expansion about x = 0 (we can do the case for a # 0, and all the
following results are the same, it is just more complicated to explain). Then, the Taylor series takes the form

flx) = icnx" @2.111)
n=0

We can make finite approximations to every Taylor series, simply by truncating it at some value N. Then,
we have the partial sums discussed earlier, which we represent by

N
fnx) =Y cnx” 2.112)
n=0

These partial sums represent a sequence of functions, and for convergent Taylor series this sequence of
functions gets to be a better and better approximation for f as N increases.

Suppose we consider the first five terms in a Taylor series of the form of Eq. (2.112). A little thought will
indicate that this series must take the form

f5(x) =cot+cix+ cox? + 30 + caxt 4 esx° (2.113)

But, this is, as noted above, just a polynomial! Apparently, the existence of a Taylor series convergent over
some interval indicates that the function being approximated can be represented by a polynomial. It also
indicates that we can make the error associated with this polynomial representation as accurate as we like
simply by taking a sufficient number of terms in the expansion (this comes from the very definition of
convergent). The type of convergence that one observes will be dependent upon the function investigated,
but nonetheless one can find a (finite) polynomial that can approximate the function with as small an error
as one likes.

Expressions like Eq. (2.113) are called Taylor polynomials. One reason that this is interesting is because
it shows, in effect, that any function with a convergent Taylor series has an expansion in basis functions that
are polynomials. Specifically, the set of basis functions is given by

1x, 2,0, x4 0. (2.114)

Suppose, for a moment, we call these functions by a symbolic name. Let pg = 1, p1(x) =1, pa(x) =x?, etc..
Then, the set of functions {p;} is sufficiently “rich”, that linear combinations of these basis functions can
provide an approximation to any function with a convergent Taylor series. From the example above with an
expansion of five terms, we would have the linear combination given by

f5(x) = copo(x) +c1p1(x) + c2p2(x) + c3p3(x) + capa(x) + csps(x) (2.115)

This is quite an amazing result. In essence it says that every function with a Taylor series that converges on
some interval can be approximated to any accuracy that we like by some polynomial! An example will be
helpful here.



2.6 Taylor’s Theorem and Taylor Series

Example 2.21 (Polynomial approximations via Taylor series.).
For this example, we consider the familiar function f(x) = ¢*. The Taylor series for this function
(computed for a=0) is easily calculated, and fairly well known.

1, 15 1, 1 5
ex—l—l—x—i—zx +6x —|—24x +120x +... (2.116)
Once nice property of the Taylor series for ¢* is that it converges for every x on the real line. It is
interesting to see how well different polynomials provide estimates for e*. Suppose we consider the
interval 0 < x < 3. In the plot below, the first 6 Taylor polynomials are plotted for the exponential
series. To be clear, the polynomials are explicitly listed below. Note that in each case, the function is
a polynomial of the form Y3 ¢;p;(x), where the p;(x) are the polynomial basis functions, po(x) = 1,

p1(x) =x, pa(x) =22, etc.

Jolx) =1
filx) =1+x

1
flx)=1+x+ Exz
falx) = l+x+lx2+1x3
e 2" 6
Fol) = Tt 22 4 o oo
a(0) = 1at 22+ o' + 5ox

fs(x)=1+x+ %xz + éx3 + %f‘ + %xs
From this plot, it is clear that the sequence of Taylor polynomials are functions, and this sequence
of functions appears to converge to the function f(x) = ¢* (as we had expected). Additionally, we
see that as the order of the Taylor polynomial increases, the approximation improves. For the Taylor
polynomial f5(x), the fit is quite good over the entire range plotted, with the maximum error being
only about 8%.

Taylor Series for *

eX

0.5 1.0 1.5 2.0 25 3.0
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Fig. 2.26: The first six Taylor polynomials for the function f(x) = e* plotted for the interval 0 < x < 3.

It is really quite remarkable to realize that any analytic function can be approximated by a polynomial
to any accuracy that we might desire. The example of Taylor polynomials provides two interesting concepts
worth reflecting on.

1. Functions can be created by linear combinations of an entire set of other functions called basis functions.
Here, the basis functions were the polynomials po(x) = 1, p1(x) = x, p2(x) = x>. The linear combination
was formed by taking the appropriate weighting of these functions, and summing them up. This is done
automatically during the process of computing the Taylor series. However, it is useful at this juncture to
realize that we can take any analytic function and, using a Taylor series, decompose this function into
the weighted sum of polynomial basis functions. We will return to this idea of decomposing functions
in terms of basis functions when we discuss Fourier series.

2. Second, we have touched on what is known in mathematics as approximation theory. Approximation
theory is concerned with the process of representing a function by a linear combination of basis func-
tions, as we have done with the Taylor polynomials. There is a much stronger statement regarding the
approximation of functions with polynomials known as the Weierstrass approximation theorem. While
it also proposes polynomials as approximations to continuous functions, it is able to make even stronger
statements regarding the behavior of the convergence of those approximations to the function than can
be said in general for Taylor series.

This discussion has touched on approximation theory. In some senses, approximation theory more generally
forms the basis for all of modern real (and complex!) analysis (i.e., almost every topic one can imagine in
applied mathematics). Later on in the text, the study of Fourier series is introduced. Fourier series is one of
the most important tools in all of applied mathematics; and, ultimately, it is also the study of approximation
theory for functions on bounded intervals. It is important to look for patterns when undertaking the study of
mathematics. A well-understood approach of one type (e.g., approximation theory using Taylor series) can
be an amazingly helpful analogue when studying new problems with similar structure (e.g., approximation
theory on finite intervals using Fourier series).

2.7 *Functionals and Integral Transforms

In this section, a concept that has already been “seen” by most students is re-evaluated for the purposes
of later use. In particular, this section is concerned with the notion of functionals, which, in short, are just
functions of functions. Recall that a function uniquely maps every element of a set A (the domain) to a single
element in set B (the range). We usually think of the set A as being some portion of the real line (or of R?,
or the complex plane, etc.) defined by a number. Similarly, we usually think of the output of the function as
being a number; thus a function maps numbers (or vectors of numbers in multiple dimensions or for complex
numbers) to numbers.

For a functional, the same definition is true, except both the input set, A, and the output set, B, are not
numbers, but entire functions. The following is a definition
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Definition 2.48 (Functional). A function whose domain is a set of functions, and whose range is another
set of functions (including the constant functions) is known as a functional (cf., (Courant and Hilbert, 1953,
Chp. 1V))

Some examples will make the notion of a functional much clearer.

Example 2.22 (A simple functional.).

Suppose we consider the set of all possible functions, f(x;a) = ax?, where a is some constant
parameter, and x € [—1, 1]. In this notation, we have indicated the parameters associated with a function
by listing them (preceded by a semi-colon) with the independent variables. This is a common notation
that is used when the parameters of a function might also be considered to vary.

We can define the following functional, F[f(x;a)| that relates each function f to a single real
number as follows.

F[f(x;a)] = /::l ax*dx

——1

In this case, we can even determine the particular real number that each function, f, is mapped to by
the functional F.

The action of the functional, F is now clear: it maps every function of the form f(x) = ax? uniquely
to the number F[f(x;a)] = 2/3 a. The mapping is unique because each value of a defines a different
member of the set of parabolas we have defined, and each such parabola is linked to a real number that
depends only on a.

According to our definition, functionals can also map complete functions to new functions. An example
here can be seen by defining the conventional moving-box average.

Example 2.23 (A functional resulting in a new function: Moving average).
Suppose we define the following box function

2 0<y< 1
B — —7 — 2
0) { 0 otherwise
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Now, for any function f, we can define the following averaging operation given by a functional, F

1
=7

FLFG) = [ fx+3)BG)dy

This functional has been constructed to (1) for any point x, take the (uniformly weighted) average of
the function f(x) between x — }T and x + %, and (2) assigns this new value to the point x. (Note: this
means that the function needs to be defined on the interval x — % <x<x+ %). Thus, the function
assigns a uniformly weighted average of the function near x to to the point x. To make this a bit more
clear, the following figures can help. First, note that the averaging function is plotted in Fig. 2.27.

B(x)
200

1.0

0.5

X
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Fig. 2.27: The averaging function; a simple uniform box with area equal to 1.

In Fig. 2.28, we have plotted a roughly linear function that has been subjected to random noise.
Often, when one wants to remove nose from a function, this can be done by passing an averaging
function over the noisy function to smooth out the random fluctuations. In this case, we will be using
the box function defined above.

f(x)

N
« [\ /
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/

3t B(1/4) . \/—/I;(x-7/4)
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Fig. 2.28: A noisy function (in blue) on the interval x € [0,2] to be smoothed. The box functions B(x — 1/4)
and B(x—7/4) are plotted for reference. Note that the functional, F (x) is only defined for } < x < 7 for this
case, because the box function would extend beyond the bounds of definition for the function otherwise.

Upon applying the moving box average via the functional F' defined above, we have as a result a
smoothed version of our function. This smoothed function can be observed in Fig.
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Fig. 2.29: A noisy function (in blue) on the interval x € [0,2] to be smoothed. The line in red indicates the
smoothed function. Note that the smoothing is only defined between % <x< 4—71, because it is only within
these bounds that the averaging function is within the domain of the noisy function f(x).

This se